Interpretable Meta-Learning of Physical Systems
- URL: http://arxiv.org/abs/2312.00477v2
- Date: Wed, 20 Mar 2024 15:25:02 GMT
- Title: Interpretable Meta-Learning of Physical Systems
- Authors: Matthieu Blanke, Marc Lelarge,
- Abstract summary: Recent meta-learning methods rely on black-box neural networks, resulting in high computational costs and limited interpretability.
We argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task.
We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems.
- Score: 4.343110120255532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.
Related papers
- Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial [0.0]
The tutorial delves into advanced techniques like entropy, free energy, and variational inference which are utilized in machine learning.
We show how an in-depth comprehension of physical systems' behavior can yield more effective and dependable machine learning models.
arXiv Detail & Related papers (2024-11-24T18:20:05Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics [39.83408993820245]
We propose a novel meta-learning approach for neural operators, which can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with varying parameter fields.
Our approach is a provably universal solution operator for multiple PDE solving tasks, with a key theoretical observation that underlying parameter fields can be captured in the first layer of neural operator models.
As applications, we demonstrate the efficacy of our proposed approach on PDE-based datasets and a real-world material modeling problem, illustrating that our method can handle complex and nonlinear physical response learning tasks while greatly improving the sampling efficiency in unseen tasks.
arXiv Detail & Related papers (2023-01-28T05:30:51Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
We provide an overview of the current state of research regarding methods for learning physical concepts in time series data.
We also analyze the most important methods from the current state of the art using the example of a three-tank system.
arXiv Detail & Related papers (2021-11-28T14:24:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
We demonstrate an unsupervised learning approach that achieves fully transferrable learning for problems in statistical physics across different physical regimes.
By coupling a sequence model based on a recurrent neural network to an extensive deep neural network, we are able to learn the equilibrium probability distributions and inter-particle interaction models of classical statistical mechanical systems.
arXiv Detail & Related papers (2020-03-03T18:37:23Z) - Operationally meaningful representations of physical systems in neural
networks [4.192302677744796]
We present a neural network architecture based on the notion that agents dealing with different aspects of a physical system should be able to communicate relevant information as efficiently as possible to one another.
This produces representations that separate different parameters which are useful for making statements about the physical system in different experimental settings.
arXiv Detail & Related papers (2020-01-02T19:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.