論文の概要: Restricted Orthogonal Gradient Projection for Continual Learning
- arxiv url: http://arxiv.org/abs/2301.12131v1
- Date: Sat, 28 Jan 2023 08:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 18:55:49.691650
- Title: Restricted Orthogonal Gradient Projection for Continual Learning
- Title(参考訳): 連続学習のための制限直交勾配投影法
- Authors: Zeyuan Yang, Zonghan Yang, Peng Li, Yang Liu
- Abstract要約: 勾配予測手法は、干渉を最小限に抑えるために、新しいタスクのための最適化空間に厳しい制約を課す。
最近の手法では、成長するネットワークで凍結パラメータを再利用し、計算コストが高い。
本稿では,制約直交勾配法(ROGO)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.89324741805405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning aims to avoid catastrophic forgetting and effectively
leverage learned experiences to master new knowledge. Existing gradient
projection approaches impose hard constraints on the optimization space for new
tasks to minimize interference, which simultaneously hinders forward knowledge
transfer. To address this issue, recent methods reuse frozen parameters with a
growing network, resulting in high computational costs. Thus, it remains a
challenge whether we can improve forward knowledge transfer for gradient
projection approaches using a fixed network architecture. In this work, we
propose the Restricted Orthogonal Gradient prOjection (ROGO) framework. The
basic idea is to adopt a restricted orthogonal constraint allowing parameters
optimized in the direction oblique to the whole frozen space to facilitate
forward knowledge transfer while consolidating previous knowledge. Our
framework requires neither data buffers nor extra parameters. Extensive
experiments have demonstrated the superiority of our framework over several
strong baselines. We also provide theoretical guarantees for our relaxing
strategy.
- Abstract(参考訳): 継続的な学習は、破滅的な忘れ物を避け、学習経験を効果的に活用して新しい知識を習得することを目的としている。
既存の勾配投影法は、新しいタスクが干渉を最小限に抑えるために最適化空間に厳しい制約を課す。
この問題に対処するため、近年の手法では、成長するネットワークで凍結パラメータを再利用し、計算コストが高い。
したがって、固定されたネットワークアーキテクチャを用いて勾配投影アプローチの知識伝達を改善できるかは依然として課題である。
本研究では,制約直交勾配法(ROGO)フレームワークを提案する。
基本的な考え方は、制限された直交制約を採用し、凍った空間全体に対して斜め方向のパラメータを最適化し、以前の知識を統合しながら知識の転送を促進することである。
私たちのフレームワークはデータバッファも余分なパラメータも必要ありません。
広範な実験により、いくつかの強力なベースラインに対するフレームワークの優位性が実証された。
また,緩和戦略に対する理論的保証も提供する。
関連論文リスト
- CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning [7.573297026523597]
我々は,Deep Continual Learning (CODE-CL) のためのConceptor-based gradient projectionを導入する。
CODE-CLは、過去のタスクの入力空間における方向的重要性を符号化し、新しい知識統合を1-S$で変調する。
概念に基づく表現を用いてタスク重複を分析し,高い相関性を持つタスクを同定する。
論文 参考訳(メタデータ) (2024-11-21T22:31:06Z) - Fine-Grained Gradient Restriction: A Simple Approach for Mitigating Catastrophic Forgetting [41.891312602770746]
Gradient Episodic Memory (GEM) は、過去のトレーニングサンプルのサブセットを利用して、モデルのパラメータの更新方向を制限することでバランスをとる。
メモリの強度は、主にGEMの能力を一般化し、それによってより有利なトレードオフをもたらすため、有効であることを示す。
論文 参考訳(メタデータ) (2024-10-01T17:03:56Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Visual Prompt Tuning in Null Space for Continual Learning [51.96411454304625]
既存のプロンプトチューニング手法は、継続学習(CL)における印象的な性能を示す。
本稿では,従来のタスクの特徴に代表される部分空間に直交する方向のプロンプトを調整し,各タスクを学習することを目的とする。
実際には、即時勾配予測を実装するために、実効的なヌル空間に基づく近似解が提案されている。
論文 参考訳(メタデータ) (2024-06-09T05:57:40Z) - GI-NAS: Boosting Gradient Inversion Attacks through Adaptive Neural Architecture Search [45.57494859267399]
グラディエント・インバージョン・アタック (Gradient Inversion Attacks) は、Federated Learning (FL) システムの伝達勾配を反転させ、ローカルクライアントの機密データを再構築する。
勾配反転法の大半は明示的な事前知識に大きく依存しており、現実的なシナリオでは利用できないことが多い。
本稿では,ニューラルネットワークを適応的に探索し,ニューラルネットワークの背後にある暗黙の先行情報をキャプチャするニューラルアーキテクチャ探索(GI-NAS)を提案する。
論文 参考訳(メタデータ) (2024-05-31T09:29:43Z) - Gradient-free neural topology optimization [0.0]
勾配のないアルゴリズムは勾配に基づくアルゴリズムと比較して多くの繰り返しを収束させる必要がある。
これにより、反復1回あたりの計算コストとこれらの問題の高次元性のため、トポロジ最適化では実現不可能となった。
我々は,潜時空間における設計を最適化する場合に,少なくとも1桁の繰り返し回数の減少につながる事前学習型ニューラルリパラメータ化戦略を提案する。
論文 参考訳(メタデータ) (2024-03-07T23:00:49Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
非典型的なクラスインクリメンタル学習は、過去のトレーニングデータにアクセスすることなく、新しいタスクと古いタスクの両方を学ぶことを目的としている。
本稿では, きめ細かい知識選択と復元のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-20T02:34:11Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Natural continual learning: success is a journey, not (just) a
destination [9.462808515258464]
自然継続学習(NCL)は、重み付け正規化と射影勾配降下を統一する新しい手法である。
提案手法は,RNNにおける連続学習問題に適用した場合,標準重み付け正規化手法とプロジェクションベースアプローチの両方に優れる。
トレーニングされたネットワークは、生体回路の実験的な発見と同様に、新しいタスクが学習されると強く保存されるタスク固有ダイナミクスを進化させる。
論文 参考訳(メタデータ) (2021-06-15T12:24:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。