論文の概要: Underwater Robotics Semantic Parser Assistant
- arxiv url: http://arxiv.org/abs/2301.12134v1
- Date: Sat, 28 Jan 2023 09:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 18:56:27.781503
- Title: Underwater Robotics Semantic Parser Assistant
- Title(参考訳): 水中ロボット意味解析アシスタント
- Authors: Parth Parekh, Cedric McGuire, Jake Imyak
- Abstract要約: 意味的構文解析は、自然言語をコンピュータが理解できる形で表現する手段である。
ここでは、シーケンスからシーケンスモデルを用いて、自然言語の発話を抽出し、それを解析可能なときに計算式に変換し、有限状態マシンで使用可能なXMLフォーマットに配置する。
実験結果から,現場の技術的個人と非技術的個人とのギャップを埋めることのできる,高精度なモデルを持つことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic parsing is a means of taking natural language and putting it in a
form that a computer can understand. There has been a multitude of approaches
that take natural language utterances and form them into lambda calculus
expressions -- mathematical functions to describe logic. Here, we experiment
with a sequence to sequence model to take natural language utterances, convert
those to lambda calculus expressions, when can then be parsed, and place them
in an XML format that can be used by a finite state machine. Experimental
results show that we can have a high accuracy model such that we can bridge the
gap between technical and nontechnical individuals in the robotics field.
- Abstract(参考訳): 意味的構文解析は、自然言語をコンピュータが理解できる形で表現する手段である。
自然言語の発話をラムダ計算式(論理を記述する数学的関数)に形成するアプローチには、数多くのものがある。
ここでは,自然言語発話を取り,それをラムダ計算式に変換し,それを解析し,有限状態機械で使用可能なxmlフォーマットに配置するシーケンスからシーケンスモデルを実験する。
実験結果から,ロボット分野における技術と非技術とのギャップを埋めることのできる高精度なモデルを持つことが示唆された。
関連論文リスト
- Navigation with Large Language Models: Semantic Guesswork as a Heuristic
for Planning [73.0990339667978]
不慣れな環境でのナビゲーションは、ロボットにとって大きな課題となる。
言語モデルを用いて、新しい現実世界環境のバイアス探索を行う。
実環境におけるLFGの評価とシミュレーションベンチマークを行った。
論文 参考訳(メタデータ) (2023-10-16T06:21:06Z) - Formalising Natural Language Quantifiers for Human-Robot Interactions [3.360922672565235]
本稿では,人間-ロボット相互作用の文脈における自然言語における量化器の定式化手法を提案する。
この解は、変数の濃度を表す能力を拡張した一階述語論理に基づいており、一般化量化器と同様に動作する。
論文 参考訳(メタデータ) (2023-08-25T06:05:57Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Enhancing Interpretability and Interactivity in Robot Manipulation: A
Neurosymbolic Approach [0.0]
本稿では,言語誘導型視覚推論とロボット操作を結合したニューロシンボリックアーキテクチャを提案する。
非熟練の人間ユーザは、制約のない自然言語を用いてロボットに刺激を与え、参照表現(REF)、質問(VQA)、把握動作指示を提供する。
シミュレーション環境では,3次元視覚と言語によるテーブルトップシーンの合成データセットを作成し,我々のアプローチを訓練し,合成シーンと実世界のシーンの両方で広範な評価を行う。
論文 参考訳(メタデータ) (2022-10-03T12:21:45Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
大規模な言語モデルは、世界に関する豊富な意味知識を符号化することができる。
このような知識は、自然言語で表現された高レベルで時間的に拡張された命令を動作させようとするロボットにとって極めて有用である。
低レベルのスキルを大規模言語モデルと組み合わせることで,言語モデルが複雑かつ時間的に拡張された命令を実行する手順について高いレベルの知識を提供することを示す。
論文 参考訳(メタデータ) (2022-04-04T17:57:11Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
我々は、人間とロボットのコラボレーションのための柔軟な言語ベースのインタフェースを提供する。
我々は、ユーザコマンドをエンコードする大規模言語モデルの分野における最近の進歩を生かしている。
言語コマンドによって修正されたロボット軌跡を含むデータセット上で、模倣学習を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2022-03-25T01:36:56Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
本研究では,ロボットインタラクションの大規模なオフラインデータセットから視覚に基づく操作タスクを学習する問題について検討する。
クラウドソースの自然言語ラベルを用いたオフラインロボットデータセットの活用を提案する。
提案手法は目標画像仕様と言語条件付き模倣技術の両方を25%以上上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-02T17:42:13Z) - Flexible Operations for Natural Language Deduction [32.92866195461153]
ParaPatternは、人間の直接の監督なしに様々な自然言語入力の論理変換を生成するモデルを構築する方法である。
我々は、BARTベースのモデルを用いて、特定の論理演算を1つ以上の前提文に適用した結果を生成する。
対象とするコントラストセットと、qascデータセットからのドメイン外文合成を用いてモデルを評価する。
論文 参考訳(メタデータ) (2021-04-18T11:36:26Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
我々は,事前学習された大規模言語モデルの利用を,少ない意味論として検討する。
意味構文解析の目標は、自然言語入力によって構造化された意味表現を生成することである。
言語モデルを用いて、入力を英語に似た制御されたサブ言語にパラフレーズし、対象の意味表現に自動的にマッピングする。
論文 参考訳(メタデータ) (2021-04-18T08:13:06Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
私たちはチェスのゲームのための言語モデリングのタスクを検討します。
自然言語とは異なり、チェス表記法は単純で制約のある決定論的領域を記述する。
トランスフォーマー言語モデルでは,移動シーケンスのみを訓練することで,ピースの追跡や法的動作の予測を高精度に行うことができる。
論文 参考訳(メタデータ) (2021-02-26T01:16:23Z) - Translating Natural Language Instructions to Computer Programs for Robot
Manipulation [0.6629765271909505]
自然言語命令をPython関数に翻訳し、オブジェクト検出器の出力にアクセスしてシーンをクエリすることを提案する。
提案手法は,ロボットの動作を直接予測するニューラルネットワークの訓練よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-26T07:57:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。