Context-Aware Differential Privacy for Language Modeling
- URL: http://arxiv.org/abs/2301.12288v1
- Date: Sat, 28 Jan 2023 20:06:16 GMT
- Title: Context-Aware Differential Privacy for Language Modeling
- Authors: My H. Dinh, Ferdinando Fioretto
- Abstract summary: This paper introduces Context-Aware Differentially Private Language Model (CADP-LM)
CADP-LM relies on the notion of emphcontext to define and audit the potentially sensitive information.
A unique characteristic of CADP-LM is its ability to target the protection of sensitive sentences and contexts only.
- Score: 41.54238543400462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable ability of language models (LMs) has also brought challenges
at the interface of AI and security. A critical challenge pertains to how much
information these models retain and leak about the training data. This is
particularly urgent as the typical development of LMs relies on huge, often
highly sensitive data, such as emails and chat logs. To contrast this
shortcoming, this paper introduces Context-Aware Differentially Private
Language Model (CADP-LM) , a privacy-preserving LM framework that relies on two
key insights: First, it utilizes the notion of \emph{context} to define and
audit the potentially sensitive information. Second, it adopts the notion of
Differential Privacy to protect sensitive information and characterize the
privacy leakage. A unique characteristic of CADP-LM is its ability to target
the protection of sensitive sentences and contexts only, providing a highly
accurate private model. Experiments on a variety of datasets and settings
demonstrate these strengths of CADP-LM.
Related papers
- Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - SoK: Reducing the Vulnerability of Fine-tuned Language Models to
Membership Inference Attacks [1.03590082373586]
We provide the first systematic review of the vulnerability of large language models to membership inference attacks.
We find that some training methods provide significantly reduced privacy risk, with the combination of differential privacy and low-rank adaptors achieving the best privacy protection against these attacks.
arXiv Detail & Related papers (2024-03-13T12:46:51Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Can Language Models be Instructed to Protect Personal Information? [30.187731765653428]
We introduce PrivQA -- a benchmark to assess the privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario.
We find that adversaries can easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs.
We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections.
arXiv Detail & Related papers (2023-10-03T17:30:33Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Selective Differential Privacy for Language Modeling [36.64464956102432]
Previous work has attempted to tackle this challenge by training RNN-based language models with differential privacy guarantees.
We propose a new privacy notion, selective differential privacy, to provide rigorous privacy guarantees on the sensitive portion of the data.
Experiments on both language modeling and dialog system building show that the proposed privacy-preserving mechanism achieves better utilities.
arXiv Detail & Related papers (2021-08-30T01:11:10Z) - CAPE: Context-Aware Private Embeddings for Private Language Learning [0.5156484100374058]
Context-Aware Private Embeddings (CAPE) is a novel approach which preserves privacy during training of embeddings.
CAPE applies calibrated noise through differential privacy, preserving the encoded semantic links while obscuring sensitive information.
Experimental results demonstrate that the proposed approach reduces private information leakage better than either single intervention.
arXiv Detail & Related papers (2021-08-27T14:50:12Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.