SoK: Semantic Privacy in Large Language Models
- URL: http://arxiv.org/abs/2506.23603v2
- Date: Wed, 16 Jul 2025 15:51:30 GMT
- Title: SoK: Semantic Privacy in Large Language Models
- Authors: Baihe Ma, Yanna Jiang, Xu Wang, Guangsheng Yu, Qin Wang, Caijun Sun, Chen Li, Xuelei Qi, Ying He, Wei Ni, Ren Ping Liu,
- Abstract summary: This paper introduces a lifecycle-centric framework to analyze semantic privacy risks across input processing, pretraining, fine-tuning, and alignment stages of Large Language Models (LLMs)<n>We categorize key attack vectors and assess how current defenses, such as differential privacy, embedding encryption, edge computing, and unlearning, address these threats.<n>We conclude by outlining open challenges, including quantifying semantic leakage, protecting multimodal inputs, balancing de-identification with generation quality, and ensuring transparency in privacy enforcement.
- Score: 24.99241770349404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) are increasingly deployed in sensitive domains, traditional data privacy measures prove inadequate for protecting information that is implicit, contextual, or inferable - what we define as semantic privacy. This Systematization of Knowledge (SoK) introduces a lifecycle-centric framework to analyze how semantic privacy risks emerge across input processing, pretraining, fine-tuning, and alignment stages of LLMs. We categorize key attack vectors and assess how current defenses, such as differential privacy, embedding encryption, edge computing, and unlearning, address these threats. Our analysis reveals critical gaps in semantic-level protection, especially against contextual inference and latent representation leakage. We conclude by outlining open challenges, including quantifying semantic leakage, protecting multimodal inputs, balancing de-identification with generation quality, and ensuring transparency in privacy enforcement. This work aims to inform future research on designing robust, semantically aware privacy-preserving techniques for LLMs.
Related papers
- Differential Privacy in Machine Learning: From Symbolic AI to LLMs [49.1574468325115]
Differential privacy provides a formal framework to mitigate privacy risks.<n>It ensures that the inclusion or exclusion of any single data point does not significantly alter the output of an algorithm.
arXiv Detail & Related papers (2025-06-13T11:30:35Z) - Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
Fine-tuning Large Language Models (LLMs) can achieve state-of-the-art performance across various domains.<n>This paper provides a comprehensive survey of privacy challenges associated with fine-tuning LLMs.<n>We highlight vulnerabilities to various privacy attacks, including membership inference, data extraction, and backdoor attacks.
arXiv Detail & Related papers (2024-12-21T06:41:29Z) - Privacy-Preserving Large Language Models: Mechanisms, Applications, and Future Directions [0.0]
This survey explores the landscape of privacy-preserving mechanisms tailored for large language models.<n>We examine their efficacy in addressing key privacy challenges, such as membership inference and model inversion attacks.<n>By synthesizing state-of-the-art approaches and future trends, this paper provides a foundation for developing robust, privacy-preserving large language models.
arXiv Detail & Related papers (2024-12-09T00:24:09Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.<n>We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.<n>We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - DePrompt: Desensitization and Evaluation of Personal Identifiable Information in Large Language Model Prompts [11.883785681042593]
DePrompt is a desensitization protection and effectiveness evaluation framework for prompt.
We integrate contextual attributes to define privacy types, achieving high-precision PII entity identification.
Our framework is adaptable to prompts and can be extended to text usability-dependent scenarios.
arXiv Detail & Related papers (2024-08-16T02:38:25Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Context-Aware Differential Privacy for Language Modeling [41.54238543400462]
This paper introduces Context-Aware Differentially Private Language Model (CADP-LM)
CADP-LM relies on the notion of emphcontext to define and audit the potentially sensitive information.
A unique characteristic of CADP-LM is its ability to target the protection of sensitive sentences and contexts only.
arXiv Detail & Related papers (2023-01-28T20:06:16Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
This paper suggests a linguistically-grounded approach to distort texts while maintaining semantic integrity.
We present two distinct frameworks for semantic-preserving distortion: a generative approach and a substitutive approach.
We also explore privacy protection in a specific medical information management scenario, showing our method effectively limits sensitive data memorization.
arXiv Detail & Related papers (2022-01-04T04:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.