論文の概要: Deep Learning for Human Parsing: A Survey
- arxiv url: http://arxiv.org/abs/2301.12416v1
- Date: Sun, 29 Jan 2023 10:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 17:17:16.800799
- Title: Deep Learning for Human Parsing: A Survey
- Title(参考訳): 人間の解析のためのディープラーニング:調査
- Authors: Xiaomei Zhang, Xiangyu Zhu, Ming Tang, Zhen Lei
- Abstract要約: 本研究では,人間の意味解析の先駆的な研究の幅広い範囲を網羅する,最先端の人間の構文解析手法の解析を行う。
1) 構造駆動型アーキテクチャは,人体の異なる部分と固有の階層構造を生かし,(2) グラフベースのネットワークは,効率的で完全な人体分析を実現するためにグローバルな情報を捉え,(3) コンテキスト認識ネットワークは,対応するクラスのピクセルを特徴付けるために,すべてのピクセルにわたって有用なコンテキストを探索し,(4) LSTMベースの手法は,短距離と長距離空間の依存関係を結合して,豊富な局所的・グローバルなコンテキストをうまく活用することができる。
- 参考スコア(独自算出の注目度): 54.812353922568995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human parsing is a key topic in image processing with many applications, such
as surveillance analysis, human-robot interaction, person search, and clothing
category classification, among many others. Recently, due to the success of
deep learning in computer vision, there are a number of works aimed at
developing human parsing algorithms using deep learning models. As methods have
been proposed, a comprehensive survey of this topic is of great importance. In
this survey, we provide an analysis of state-of-the-art human parsing methods,
covering a broad spectrum of pioneering works for semantic human parsing. We
introduce five insightful categories: (1) structure-driven architectures
exploit the relationship of different human parts and the inherent hierarchical
structure of a human body, (2) graph-based networks capture the global
information to achieve an efficient and complete human body analysis, (3)
context-aware networks explore useful contexts across all pixel to characterize
a pixel of the corresponding class, (4) LSTM-based methods can combine
short-distance and long-distance spatial dependencies to better exploit
abundant local and global contexts, and (5) combined auxiliary information
approaches use related tasks or supervision to improve network performance. We
also discuss the advantages/disadvantages of the methods in each category and
the relationships between methods in different categories, examine the most
widely used datasets, report performances, and discuss promising future
research directions in this area.
- Abstract(参考訳): 人間のパーシングは、監視分析、人間とロボットの相互作用、人物探索、衣服カテゴリー分類など、多くのアプリケーションによる画像処理における重要なトピックである。
近年,コンピュータビジョンにおける深層学習の成功により,深層学習モデルを用いた人間の解析アルゴリズムの開発を目的とした研究が数多く行われている。
方法が提案されているように、このトピックに関する包括的な調査は極めて重要である。
本研究は,セマンティックな人間解析のための先駆的研究の幅広い範囲をカバーする,最先端の人間解析手法の分析を提供する。
We introduce five insightful categories: (1) structure-driven architectures exploit the relationship of different human parts and the inherent hierarchical structure of a human body, (2) graph-based networks capture the global information to achieve an efficient and complete human body analysis, (3) context-aware networks explore useful contexts across all pixel to characterize a pixel of the corresponding class, (4) LSTM-based methods can combine short-distance and long-distance spatial dependencies to better exploit abundant local and global contexts, and (5) combined auxiliary information approaches use related tasks or supervision to improve network performance.
また,各カテゴリにおける手法の長所・短所,異なるカテゴリの手法間の関係,最も広く利用されているデータセットの検証,性能の報告,この分野の今後の研究方向性について検討する。
関連論文リスト
- Exploiting Contextual Uncertainty of Visual Data for Efficient Training of Deep Models [0.65268245109828]
アクティブラーニングCDALにおける文脈多様性の概念を導入する。
モデルバイアスを低減するために、文脈的に公正なデータをキュレートするデータ修復アルゴリズムを提案する。
我々は、野生生物カメラトラップ画像の画像検索システムと、質の悪い農村道路に対する信頼性の高い警告システムの開発に取り組んでいる。
論文 参考訳(メタデータ) (2024-11-04T09:43:33Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - Deep Learning Technique for Human Parsing: A Survey and Outlook [5.236995853909988]
本調査では,1人のパース,複数人のパース,ビデオ人間のパースという3つのサブタスクを総合的にレビューする。
我々はトランスフォーマーに基づくヒューマンパーシングフレームワークを提案し、フォローアップ研究のための高性能なベースラインを提供する。
この分野では未検討のオープンな課題の集合を指摘し、今後の研究に向けた新たな方向性を提案する。
論文 参考訳(メタデータ) (2023-01-01T12:39:57Z) - A Skeleton-aware Graph Convolutional Network for Human-Object
Interaction Detection [14.900704382194013]
そこで我々は,SGCN4HOIという人-物間相互作用検出のためのスケルトン対応グラフ畳み込みネットワークを提案する。
我々のネットワークは、人間のキーポイントとオブジェクトキーポイントの間の空間的接続を利用して、グラフの畳み込みによるきめ細かい構造的相互作用を捉えます。
このような幾何学的特徴と視覚的特徴と、人間と物体のペアから得られる空間的構成特徴を融合させる。
論文 参考訳(メタデータ) (2022-07-11T15:20:18Z) - 2D Human Pose Estimation: A Survey [16.56050212383859]
人間のポーズ推定は、入力データ中の人間の解剖学的キーポイントまたは身体部分のローカライズを目的としている。
ディープラーニング技術は、データから直接特徴表現を学習することを可能にする。
本稿では,近年の2次元ポーズ推定手法の成果を振り返り,包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-15T08:09:43Z) - Differentiable Multi-Granularity Human Representation Learning for
Instance-Aware Human Semantic Parsing [131.97475877877608]
カテゴリーレベルの人間のセマンティックセグメンテーションとマルチパーソンポーズ推定を共同およびエンドツーエンドで学習するために,新たなボトムアップ方式を提案する。
さまざまな人間の粒度にわたって構造情報を利用する、コンパクトで効率的で強力なフレームワークです。
3つのインスタンス認識型ヒューマンデータセットの実験は、我々のモデルがより効率的な推論で他のボトムアップの代替案よりも優れていることを示している。
論文 参考訳(メタデータ) (2021-03-08T06:55:00Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Hierarchical Human Parsing with Typed Part-Relation Reasoning [179.64978033077222]
このタスクでは、人体構造をモデル化する方法が中心的なテーマである。
深層グラフネットワークの表現能力と階層的人間構造を同時に活用することを模索する。
論文 参考訳(メタデータ) (2020-03-10T16:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。