論文の概要: Mitigating Adversarial Effects of False Data Injection Attacks in Power Grid
- arxiv url: http://arxiv.org/abs/2301.12487v3
- Date: Tue, 08 Apr 2025 21:51:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 16:13:59.221073
- Title: Mitigating Adversarial Effects of False Data Injection Attacks in Power Grid
- Title(参考訳): 電力グリッドにおける偽データ注入攻撃の逆効果の軽減
- Authors: Farhin Farhad Riya, Shahinul Hoque, Yingyuan Yang, Jiangnan Li, Jinyuan Stella Sun, Hairong Qi,
- Abstract要約: Deep Neural Networksの利点は、False Data Injection Attacks (FDIA)を検出するために電力グリッドに取り入れられている。
本稿では, ランダム化を利用して, 入力をパディングすることで, 逆効果を緩和するフレームワークを提案する。
IEEE 14-bus, 30-bus, 118-bus, 300-bus を用いたシミュレーションにより, フレームワークの良好な結果を示す。
- 参考スコア(独自算出の注目度): 7.64743281201963
- License:
- Abstract: Deep Neural Networks have proven to be highly accurate at a variety of tasks in recent years. The benefits of Deep Neural Networks have also been embraced in power grids to detect False Data Injection Attacks (FDIA) while conducting critical tasks like state estimation. However, the vulnerabilities of DNNs along with the distinct infrastructure of the cyber-physical-system (CPS) can favor the attackers to bypass the detection mechanism. Moreover, the divergent nature of CPS engenders limitations to the conventional defense mechanisms for False Data Injection Attacks. In this paper, we propose a DNN framework with an additional layer that utilizes randomization to mitigate the adversarial effect by padding the inputs. The primary advantage of our method is when deployed to a DNN model it has a trivial impact on the model's performance even with larger padding sizes. We demonstrate the favorable outcome of the framework through simulation using the IEEE 14-bus, 30-bus, 118-bus, and 300-bus systems. Furthermore to justify the framework we select attack techniques that generate subtle adversarial examples that can bypass the detection mechanism effortlessly.
- Abstract(参考訳): 近年、ディープニューラルネットワークは様々なタスクにおいて非常に正確であることが証明されている。
Deep Neural Networksの利点は、状態推定のような重要なタスクを実行しながら、偽データ注入攻撃(FDIA)を検出するための電力グリッドにも取り入れられている。
しかし、DNNの脆弱性とサイバー物理システム(CPS)のインフラは、攻撃者が検出メカニズムをバイパスすることを好んでいる。
さらに、CPSの発散特性は、偽データ注入攻撃に対する従来の防御機構に制限を与えている。
本稿では,入力をパディングすることで,逆効果を軽減するためにランダム化を利用する付加層を持つDNNフレームワークを提案する。
我々の方法の主な利点は、DNNモデルにデプロイすると、大きなパディングサイズであっても、モデルの性能に自明な影響を与えます。
IEEE 14-bus, 30-bus, 118-bus, 300-bus を用いたシミュレーションにより, フレームワークの良好な結果を示す。
さらに、フレームワークを正当化するために、検出メカニズムを回避できる微妙な敵例を生成する攻撃手法を選択します。
関連論文リスト
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)を提案する。
提案モデルは、Kirchhoffの法則を適用して、ニューラルネットワークの損失関数に物理原理を統合する。
論文 参考訳(メタデータ) (2023-12-08T00:05:13Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
偽データインジェクション攻撃(FDIA)は、電力システムの状態推定に重大なセキュリティ上の脅威をもたらす。
最近の研究では、機械学習(ML)技術、特にディープニューラルネットワーク(DNN)が提案されている。
論文 参考訳(メタデータ) (2021-02-17T22:26:34Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。