Robust Meta Learning for Image based tasks
- URL: http://arxiv.org/abs/2301.12698v1
- Date: Mon, 30 Jan 2023 07:08:37 GMT
- Title: Robust Meta Learning for Image based tasks
- Authors: Penghao Jiang, Xin Ke, ZiFeng Wang, Chunxi Li
- Abstract summary: A machine learning model that generalizes well should obtain low errors on unseen test examples.
We propose a novel robust meta-learning method, which is more robust to the image-based testing tasks.
In experiments, we demonstrate that our algorithm not only has better generalization performance but also robust to different unknown testing tasks.
- Score: 1.1718589131017048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A machine learning model that generalizes well should obtain low errors on
unseen test examples. Thus, if we learn an optimal model in training data, it
could have better generalization performance in testing tasks. However,
learning such a model is not possible in standard machine learning frameworks
as the distribution of the test data is unknown. To tackle this challenge, we
propose a novel robust meta-learning method, which is more robust to the
image-based testing tasks which is unknown and has distribution shifts with
training tasks. Our robust meta-learning method can provide robust optimal
models even when data from each distribution are scarce. In experiments, we
demonstrate that our algorithm not only has better generalization performance
but also robust to different unknown testing tasks.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR)
Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data.
During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task.
arXiv Detail & Related papers (2023-08-31T06:32:11Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time.
We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions.
Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
arXiv Detail & Related papers (2021-03-30T09:33:38Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Curriculum Learning with Diversity for Supervised Computer Vision Tasks [1.5229257192293197]
We introduce a novel curriculum sampling strategy which takes into consideration the diversity of the training data together with the difficulty of the inputs.
We prove that our strategy is very efficient for unbalanced data sets, leading to faster convergence and more accurate results.
arXiv Detail & Related papers (2020-09-22T15:32:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.