論文の概要: SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear
Layer
- arxiv url: http://arxiv.org/abs/2301.12811v3
- Date: Wed, 6 Sep 2023 02:36:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:46:28.592199
- Title: SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear
Layer
- Title(参考訳): SAN: 分別正規化線形層によるGANの誘電性誘導
- Authors: Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai,
Toshimitsu Uesaka, Naoki Murata, Yuki Mitsufuji
- Abstract要約: GAN(Generative Adversarial Network)は、ジェネレータと識別器を極小目標で最適化することにより、ターゲットの確率分布を学習する。
判別器が分布間の距離として機能するのに十分な量化可能な条件を導出する。
我々は、スライシング対逆ネットワーク(SAN)と呼ばれる新しいGANトレーニングスキームを提案する。
- 参考スコア(独自算出の注目度): 21.70431749376314
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative adversarial networks (GANs) learn a target probability
distribution by optimizing a generator and a discriminator with minimax
objectives. This paper addresses the question of whether such optimization
actually provides the generator with gradients that make its distribution close
to the target distribution. We derive metrizable conditions, sufficient
conditions for the discriminator to serve as the distance between the
distributions by connecting the GAN formulation with the concept of sliced
optimal transport. Furthermore, by leveraging these theoretical results, we
propose a novel GAN training scheme, called slicing adversarial network (SAN).
With only simple modifications, a broad class of existing GANs can be converted
to SANs. Experiments on synthetic and image datasets support our theoretical
results and the SAN's effectiveness as compared to usual GANs. Furthermore, we
also apply SAN to StyleGAN-XL, which leads to state-of-the-art FID score
amongst GANs for class conditional generation on ImageNet 256$\times$256.
- Abstract(参考訳): generative adversarial networks(gans)は、ミニマックス目的のジェネレータと判別器を最適化することにより、ターゲット確率分布を学習する。
本稿では,そのような最適化が,その分布を目標分布に近づける勾配を生成器に実際に与えるかどうかという問題に対処する。
我々は、GAN定式化とスライスされた最適輸送の概念を結合することにより、判別器が分布間の距離として機能する十分な条件を導出する。
さらに,これらの理論結果を活用して,slicing adversarial network (san) と呼ばれる新しいganトレーニング手法を提案する。
単純な修正だけで、既存のGANの幅広いクラスをSANに変換することができる。
合成および画像データセットの実験は、通常のGANと比較して、我々の理論結果とSANの有効性を支持する。
さらに、SANをStyleGAN-XLに適用し、ImageNet 256$\times$256のクラス条件生成のために、GAN間で最先端のFIDスコアを得る。
関連論文リスト
- GANs Settle Scores! [16.317645727944466]
本稿では,変分的手法による発電機最適化を統一的に解析する手法を提案する。
$f$-divergence-minimizing GANsにおいて、最適生成器はその出力分布のスコアとデータ分布のスコアとを一致させるものであることを示す。
本稿では,スコアとフローマッチングに基づく$f$-GAN と IPM-GAN の新たな代替案を提案する。
論文 参考訳(メタデータ) (2023-06-02T16:24:07Z) - Minimax Optimality (Probably) Doesn't Imply Distribution Learning for
GANs [44.4200799586461]
標準的な暗号的仮定は、この強い条件がまだ不十分であることを示している。
我々の技術は、GANとPRGの深い関係を明らかにし、GANの計算環境に関するさらなる洞察をもたらすものと信じている。
論文 参考訳(メタデータ) (2022-01-18T18:59:21Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Self Sparse Generative Adversarial Networks [73.590634413751]
GAN(Generative Adversarial Networks)は、敵対的トレーニングを通じてデータ分布を学習する監視されていない生成モデルである。
本論文では,パラメータ空間を小さくし,ゼロ勾配問題を軽減するSelf Sparse Generative Adversarial Network (Self-Sparse GAN)を提案する。
論文 参考訳(メタデータ) (2021-01-26T04:49:12Z) - Mode Penalty Generative Adversarial Network with adapted Auto-encoder [0.15229257192293197]
本稿では,事前学習した自動エンコーダと組み合わされたモードペナルティGANを提案する。
提案手法をGANに適用することにより, ジェネレータの最適化がより安定し, 実験による収束が早くなることを示す。
論文 参考訳(メタデータ) (2020-11-16T03:39:53Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
GAN(Generative Adversarial Network)は、事前定義された事前分布から現実的なデータを生成することに成功している。
実際には、意味情報はデータから学んだ潜在的な分布によって表現される。
ローカル座標符号化(LCC)を用いたLCCGANモデルを提案する。
論文 参考訳(メタデータ) (2020-07-28T09:17:50Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
本研究では,潜時空間におけるサンプリングは,潜時空間の前対数密度と判別器出力スコアの和によって誘導されるエネルギーベースモデルに従って,潜時空間におけるサンプリングを行うことによって達成できることを示す。
判別器駆動潜時サンプリング(DDLS)は,高次元画素空間で動作する従来の手法と比較して,高効率であることを示す。
論文 参考訳(メタデータ) (2020-03-12T23:33:50Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
GAN(Generative Adversarial Networks)は、データセットの基盤となる分布を学習するための現代的な手法である。
GANは、基礎となるディストリビューションに関する追加情報がないモデルフリーで設計されている。
本稿では,ベイズネット/MRFの近傍に単純な識別器群を用いたモデルベースGANの設計を提案する。
論文 参考訳(メタデータ) (2020-03-02T04:31:22Z) - Optimizing Generative Adversarial Networks for Image Super Resolution
via Latent Space Regularization [4.529132742139768]
GAN(Generative Adversarial Networks)は、多様体内の実画像の分布を学習し、実際のように見えるサンプルを生成する。
本稿では,これらの問題を教師付きGANに対して緩和する方法を探究する。
論文 参考訳(メタデータ) (2020-01-22T16:27:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。