SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
- URL: http://arxiv.org/abs/2301.12811v4
- Date: Wed, 10 Apr 2024 04:03:06 GMT
- Title: SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
- Authors: Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu Uesaka, Naoki Murata, Yuki Mitsufuji,
- Abstract summary: Generative adversarial networks (GANs) learn a target probability distribution by optimizing a generator and a discriminator with minimax objectives.
This paper addresses the question of whether such optimization actually provides the generator with gradients that make its distribution close to the target distribution.
We propose a novel GAN training scheme, called slicing adversarial network (SAN)
- Score: 20.667910240515482
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative adversarial networks (GANs) learn a target probability distribution by optimizing a generator and a discriminator with minimax objectives. This paper addresses the question of whether such optimization actually provides the generator with gradients that make its distribution close to the target distribution. We derive metrizable conditions, sufficient conditions for the discriminator to serve as the distance between the distributions by connecting the GAN formulation with the concept of sliced optimal transport. Furthermore, by leveraging these theoretical results, we propose a novel GAN training scheme, called slicing adversarial network (SAN). With only simple modifications, a broad class of existing GANs can be converted to SANs. Experiments on synthetic and image datasets support our theoretical results and the SAN's effectiveness as compared to usual GANs. Furthermore, we also apply SAN to StyleGAN-XL, which leads to state-of-the-art FID score amongst GANs for class conditional generation on ImageNet 256$\times$256. Our implementation is available on https://ytakida.github.io/san.
Related papers
- GANs Settle Scores! [16.317645727944466]
We propose a unified approach to analyzing the generator optimization through variational approach.
In $f$-divergence-minimizing GANs, we show that the optimal generator is the one that matches the score of its output distribution with that of the data distribution.
We propose novel alternatives to $f$-GAN and IPM-GAN training based on score and flow matching, and discriminator-guided Langevin sampling.
arXiv Detail & Related papers (2023-06-02T16:24:07Z) - Minimax Optimality (Probably) Doesn't Imply Distribution Learning for
GANs [44.4200799586461]
We show that standard cryptographic assumptions imply that this stronger condition is still insufficient.
Our techniques reveal a deep connection between GANs and PRGs, which we believe will lead to further insights into the computational landscape of GANs.
arXiv Detail & Related papers (2022-01-18T18:59:21Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Self Sparse Generative Adversarial Networks [73.590634413751]
Generative Adversarial Networks (GANs) are an unsupervised generative model that learns data distribution through adversarial training.
We propose a Self Sparse Generative Adversarial Network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem.
arXiv Detail & Related papers (2021-01-26T04:49:12Z) - Mode Penalty Generative Adversarial Network with adapted Auto-encoder [0.15229257192293197]
We propose a mode penalty GAN combined with pre-trained auto encoder for explicit representation of generated and real data samples in encoded space.
We demonstrate that applying the proposed method to GANs helps generator's optimization becoming more stable and having faster convergence through experimental evaluations.
arXiv Detail & Related papers (2020-11-16T03:39:53Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution.
In practice, semantic information might be represented by some latent distribution learned from data.
We propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data.
arXiv Detail & Related papers (2020-07-28T09:17:50Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
We show that sampling in latent space can be achieved by sampling in latent space according to an energy-based model induced by the sum of the latent prior log-density and the discriminator output score.
We show that Discriminator Driven Latent Sampling(DDLS) is highly efficient compared to previous methods which work in the high-dimensional pixel space.
arXiv Detail & Related papers (2020-03-12T23:33:50Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set.
GANs are designed in a model-free fashion where no additional information about the underlying distribution is available.
We propose a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF.
arXiv Detail & Related papers (2020-03-02T04:31:22Z) - Optimizing Generative Adversarial Networks for Image Super Resolution
via Latent Space Regularization [4.529132742139768]
Generative Adversarial Networks (GANs) try to learn the distribution of the real images in the manifold to generate samples that look real.
We probe for ways to alleviate these problems for supervised GANs in this paper.
arXiv Detail & Related papers (2020-01-22T16:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.