Hierarchical Imitation Learning with Vector Quantized Models
- URL: http://arxiv.org/abs/2301.12962v2
- Date: Mon, 29 May 2023 13:44:30 GMT
- Title: Hierarchical Imitation Learning with Vector Quantized Models
- Authors: Kalle Kujanp\"a\"a, Joni Pajarinen, Alexander Ilin
- Abstract summary: We propose to use reinforcement learning to identify subgoals in expert trajectories.
We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning.
In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art.
- Score: 77.67190661002691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to plan actions on multiple levels of abstraction enables
intelligent agents to solve complex tasks effectively. However, learning the
models for both low and high-level planning from demonstrations has proven
challenging, especially with higher-dimensional inputs. To address this issue,
we propose to use reinforcement learning to identify subgoals in expert
trajectories by associating the magnitude of the rewards with the
predictability of low-level actions given the state and the chosen subgoal. We
build a vector-quantized generative model for the identified subgoals to
perform subgoal-level planning. In experiments, the algorithm excels at solving
complex, long-horizon decision-making problems outperforming state-of-the-art.
Because of its ability to plan, our algorithm can find better trajectories than
the ones in the training set
Related papers
- Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction [19.59151245929067]
We study whether giving an agent an object-centric mapping (describing a set of items and their attributes) allow for more efficient learning.
We find this problem is best solved hierarchically by modelling items at a higher level of state abstraction to pixels.
We make use of this to propose a fully model-based algorithm that learns a discriminative world model.
arXiv Detail & Related papers (2024-08-21T17:59:31Z) - Simple Hierarchical Planning with Diffusion [54.48129192534653]
Diffusion-based generative methods have proven effective in modeling trajectories with offline datasets.
We introduce the Hierarchical diffuser, a fast, yet surprisingly effective planning method combining the advantages of hierarchical and diffusion-based planning.
Our model adopts a "jumpy" planning strategy at the higher level, which allows it to have a larger receptive field but at a lower computational cost.
arXiv Detail & Related papers (2024-01-05T05:28:40Z) - Improving Long-Horizon Imitation Through Instruction Prediction [93.47416552953075]
In this work, we explore the use of an often unused source of auxiliary supervision: language.
Inspired by recent advances in transformer-based models, we train agents with an instruction prediction loss that encourages learning temporally extended representations that operate at a high level of abstraction.
In further analysis we find that instruction modeling is most important for tasks that require complex reasoning, while understandably offering smaller gains in environments that require simple plans.
arXiv Detail & Related papers (2023-06-21T20:47:23Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Option-Aware Adversarial Inverse Reinforcement Learning for Robotic
Control [44.77500987121531]
Hierarchical Imitation Learning (HIL) has been proposed to recover highly-complex behaviors in long-horizon tasks from expert demonstrations.
We develop a novel HIL algorithm based on Adversarial Inverse Reinforcement Learning.
We also propose a Variational Autoencoder framework for learning with our objectives in an end-to-end fashion.
arXiv Detail & Related papers (2022-10-05T00:28:26Z) - Goal Agnostic Planning using Maximum Likelihood Paths in Hypergraph
World Models [1.370633147306388]
We present a hypergraph-based machine learning algorithm, a datastructure--driven maintenance method, and a planning algorithm based on a probabilistic application of Dijkstra's algorithm.
We prove that the algorithm determines optimal solutions within the problem space, mathematically bound learning performance, and supply a mathematical model analyzing system state progression through time.
arXiv Detail & Related papers (2021-10-18T16:22:33Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Active Learning of Abstract Plan Feasibility [17.689758291966502]
We present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot.
We leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data.
In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions.
arXiv Detail & Related papers (2021-07-01T18:17:01Z) - Compositional Reinforcement Learning from Logical Specifications [21.193231846438895]
Recent approaches automatically generate a reward function from a given specification and use a suitable reinforcement learning algorithm to learn a policy.
We develop a compositional learning approach, called DiRL, that interleaves high-level planning and reinforcement learning.
Our approach then incorporates reinforcement learning to learn neural network policies for each edge (sub-task) within a Dijkstra-style planning algorithm to compute a high-level plan in the graph.
arXiv Detail & Related papers (2021-06-25T22:54:28Z) - A Consciousness-Inspired Planning Agent for Model-Based Reinforcement
Learning [104.3643447579578]
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state.
The design allows agents to learn to plan effectively, by attending to the relevant objects, leading to better out-of-distribution generalization.
arXiv Detail & Related papers (2021-06-03T19:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.