Efficient Learning of High Level Plans from Play
- URL: http://arxiv.org/abs/2303.09628v1
- Date: Thu, 16 Mar 2023 20:09:47 GMT
- Title: Efficient Learning of High Level Plans from Play
- Authors: N\'uria Armengol Urp\'i, Marco Bagatella, Otmar Hilliges, Georg
Martius, Stelian Coros
- Abstract summary: We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
- Score: 57.29562823883257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world robotic manipulation tasks remain an elusive challenge, since they
involve both fine-grained environment interaction, as well as the ability to
plan for long-horizon goals. Although deep reinforcement learning (RL) methods
have shown encouraging results when planning end-to-end in high-dimensional
environments, they remain fundamentally limited by poor sample efficiency due
to inefficient exploration, and by the complexity of credit assignment over
long horizons. In this work, we present Efficient Learning of High-Level Plans
from Play (ELF-P), a framework for robotic learning that bridges motion
planning and deep RL to achieve long-horizon complex manipulation tasks. We
leverage task-agnostic play data to learn a discrete behavioral prior over
object-centric primitives, modeling their feasibility given the current
context. We then design a high-level goal-conditioned policy which (1) uses
primitives as building blocks to scaffold complex long-horizon tasks and (2)
leverages the behavioral prior to accelerate learning. We demonstrate that
ELF-P has significantly better sample efficiency than relevant baselines over
multiple realistic manipulation tasks and learns policies that can be easily
transferred to physical hardware.
Related papers
- Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) is a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control.
PSL achieves success rates of over 85%, out-performing language-based, classical, and end-to-end approaches.
arXiv Detail & Related papers (2024-05-02T17:59:31Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
We present CRISP, a novel HRL algorithm that generates a curriculum of achievable subgoals for evolving lower-level primitives.
CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations.
We demonstrate that CRISP demonstrates impressive generalization in real world scenarios.
arXiv Detail & Related papers (2023-04-07T08:22:50Z) - Learning Goal-Conditioned Policies Offline with Self-Supervised Reward
Shaping [94.89128390954572]
We propose a novel self-supervised learning phase on the pre-collected dataset to understand the structure and the dynamics of the model.
We evaluate our method on three continuous control tasks, and show that our model significantly outperforms existing approaches.
arXiv Detail & Related papers (2023-01-05T15:07:10Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
We devise a method that enables meta-learning on long-horizon, sparse-reward tasks.
Our core idea is to leverage prior experience extracted from offline datasets during meta-learning.
arXiv Detail & Related papers (2022-04-25T17:58:19Z) - Successor Feature Landmarks for Long-Horizon Goal-Conditioned
Reinforcement Learning [54.378444600773875]
We introduce Successor Feature Landmarks (SFL), a framework for exploring large, high-dimensional environments.
SFL drives exploration by estimating state-novelty and enables high-level planning by abstracting the state-space as a non-parametric landmark-based graph.
We show in our experiments on MiniGrid and ViZDoom that SFL enables efficient exploration of large, high-dimensional state spaces.
arXiv Detail & Related papers (2021-11-18T18:36:05Z) - Automatic Goal Generation using Dynamical Distance Learning [5.797847756967884]
Reinforcement Learning (RL) agents can learn to solve complex sequential decision making tasks by interacting with the environment.
In the field of multi-goal RL, where agents are required to reach multiple goals to solve complex tasks, improving sample efficiency can be especially challenging.
We propose a method for automatic goal generation using a dynamical distance function (DDF) in a self-supervised fashion.
arXiv Detail & Related papers (2021-11-07T16:23:56Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
We show that the Curious Sample Planner can efficiently discover temporally-extended plans for solving a wide range of physically realistic 3D tasks.
In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples.
arXiv Detail & Related papers (2020-04-22T21:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.