SpinQ: Compilation strategies for scalable spin-qubit architectures
- URL: http://arxiv.org/abs/2301.13241v2
- Date: Wed, 1 May 2024 15:56:02 GMT
- Title: SpinQ: Compilation strategies for scalable spin-qubit architectures
- Authors: Nikiforos Paraskevopoulos, Fabio Sebastiano, Carmen G. Almudever, Sebastian Feld,
- Abstract summary: We discuss the unique mapping challenges of a scalable crossbar architecture with shared control.
We introduce SpinQ, the first native compilation framework for scalable spin-qubit architectures.
- Score: 1.236829197968612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite NISQ devices being severely constrained, hardware- and algorithm-aware quantum circuit mapping techniques have been developed to enable successful algorithm executions. Not so much attention has been paid to mapping and compilation implementations for spin-qubit quantum processors due to the scarce availability of experimental devices and their small sizes. However, based on their high scalability potential and their rapid progress it is timely to start exploring solutions on such devices. In this work, we discuss the unique mapping challenges of a scalable crossbar architecture with shared control and introduce SpinQ, the first native compilation framework for scalable spin-qubit architectures. At the core of SpinQ is the Integrated Strategy that addresses the unique operational constraints of the crossbar while considering compilation scalability and obtaining a O(n) computational complexity. To evaluate the performance of SpinQ on this novel architecture, we compiled a broad set of well-defined quantum circuits and performed an in-depth analysis based on multiple metrics such as gate overhead, depth overhead, and estimated success probability, which in turn allowed us to create unique mapping and architectural insights. Finally, we propose novel mapping techniques that could increase algorithm success rates on this architecture and potentially inspire further research on quantum circuit mapping for other scalable spin-qubit architectures.
Related papers
- Comparison of Superconducting NISQ Architectures [0.0]
We study superconducting architectures including Google's Sycamore, IBM's Heavy-Hex, Rigetti's Aspen, and Ankaa.
We also study compilation tools that target these architectures.
arXiv Detail & Related papers (2024-09-03T17:12:08Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Qubit-Wise Architecture Search Method for Variational Quantum Circuits [11.790545710021593]
We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
arXiv Detail & Related papers (2024-03-07T07:08:57Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Mapping quantum algorithms to multi-core quantum computing architectures [1.8602413562219944]
Multi-core quantum computer architecture poses new challenges such as expensive inter-core communication.
A detailed critical discussion of the quantum circuit mapping problem for multi-core quantum computing architectures is provided.
We further explore the performance of a mapping method, which is formulated as a partitioning over time graph problem.
arXiv Detail & Related papers (2023-03-28T16:46:59Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
We introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large optimization problems onto distributed quantum architectures.
This is achieved through the combined use of graph partitioning and quantum circuit cutting.
We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms.
arXiv Detail & Related papers (2021-07-15T18:00:32Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.