Qubit-Wise Architecture Search Method for Variational Quantum Circuits
- URL: http://arxiv.org/abs/2403.04268v1
- Date: Thu, 7 Mar 2024 07:08:57 GMT
- Title: Qubit-Wise Architecture Search Method for Variational Quantum Circuits
- Authors: Jialin Chen, Zhiqiang Cai, Ke Xu, Di Wu, Wei Cao
- Abstract summary: We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
- Score: 11.790545710021593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Considering the noise level limit, one crucial aspect for quantum machine
learning is to design a high-performing variational quantum circuit
architecture with small number of quantum gates. As the classical neural
architecture search (NAS), quantum architecture search methods (QAS) employ
methods like reinforcement learning, evolutionary algorithms and supernet
optimiza-tion to improve the search efficiency. In this paper, we propose a
novel qubit-wise architec-ture search (QWAS) method, which progres-sively
search one-qubit configuration per stage, and combine with Monte Carlo Tree
Search al-gorithm to find good quantum architectures by partitioning the search
space into several good and bad subregions. The numerical experimental results
indicate that our proposed method can balance the exploration and exploitation
of cir-cuit performance and size in some real-world tasks, such as MNIST,
Fashion and MOSI. As far as we know, QWAS achieves the state-of-art re-sults of
all tasks in the terms of accuracy and circuit size.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - An RNN-policy gradient approach for quantum architecture search [7.616832563471534]
Variational quantum circuits are one of the promising ways to exploit the advantages of quantum computing.
The design of the quantum circuit architecture might greatly affect the performance capability of the quantum algorithms.
The quantum architecture search is the process of automatically designing quantum circuit architecture.
arXiv Detail & Related papers (2024-05-09T16:44:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QArchSearch: A Scalable Quantum Architecture Search Package [1.725192300740999]
We present textttQArchSearch, an AI based quantum architecture search package with the textttQTensor library as a backend.
We show that the search package is able to efficiently scale the search to large quantum circuits and enables the exploration of more complex models for different quantum applications.
arXiv Detail & Related papers (2023-10-11T20:00:33Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Architecture Search with Meta-learning [0.18899300124593643]
Variational quantum algorithms (VQAs) have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling and quantum machine learning models.
Quantum architecture search (QAS) aims to automate the design of quantum circuits with classical optimization algorithms.
arXiv Detail & Related papers (2021-06-11T08:59:16Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
We automate the design of counting models with Neural Architecture Search (NAS)
We introduce an end-to-end searched encoder-decoder architecture, Automatic Multi-Scale Network (AMSNet)
arXiv Detail & Related papers (2020-02-29T09:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.