論文の概要: Fairness and Accuracy under Domain Generalization
- arxiv url: http://arxiv.org/abs/2301.13323v1
- Date: Mon, 30 Jan 2023 23:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 18:18:22.954989
- Title: Fairness and Accuracy under Domain Generalization
- Title(参考訳): 領域一般化における公正性と正確性
- Authors: Thai-Hoang Pham, Xueru Zhang, Ping Zhang
- Abstract要約: 機械学習アルゴリズムが特定の社会グループに偏っているのではないかという懸念が持ち上がっている。
MLモデルを公平にするための多くのアプローチが提案されているが、トレーニングとデプロイメントにおけるデータ分散が同一であるという仮定に依存しているのが一般的である。
本研究では,テスト時のデータのサンプル化が可能な領域一般化の下でのフェアネスと精度の両面について検討する。
- 参考スコア(独自算出の注目度): 10.661409428935494
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As machine learning (ML) algorithms are increasingly used in high-stakes
applications, concerns have arisen that they may be biased against certain
social groups. Although many approaches have been proposed to make ML models
fair, they typically rely on the assumption that data distributions in training
and deployment are identical. Unfortunately, this is commonly violated in
practice and a model that is fair during training may lead to an unexpected
outcome during its deployment. Although the problem of designing robust ML
models under dataset shifts has been widely studied, most existing works focus
only on the transfer of accuracy. In this paper, we study the transfer of both
fairness and accuracy under domain generalization where the data at test time
may be sampled from never-before-seen domains. We first develop theoretical
bounds on the unfairness and expected loss at deployment, and then derive
sufficient conditions under which fairness and accuracy can be perfectly
transferred via invariant representation learning. Guided by this, we design a
learning algorithm such that fair ML models learned with training data still
have high fairness and accuracy when deployment environments change.
Experiments on real-world data validate the proposed algorithm. Model
implementation is available at https://github.com/pth1993/FATDM.
- Abstract(参考訳): 機械学習(ML)アルゴリズムがハイテイクなアプリケーションでますます使われているため、特定の社会グループに対して偏見を抱いているのではないかという懸念が持ち上がっている。
MLモデルを公平にするための多くのアプローチが提案されているが、トレーニングとデプロイメントにおけるデータ分散が同一であるという仮定に依存しているのが一般的である。
残念ながら、これは実際には一般的に違反しており、トレーニング中に公正なモデルがデプロイ中に予期せぬ結果をもたらす可能性がある。
データセットシフトの下で堅牢なMLモデルを設計する問題は広く研究されているが、既存の研究の多くは精度の伝達にのみ焦点をあてている。
本稿では,テスト時のデータを前例のない領域からサンプリングできる領域一般化の下での公平性と精度の両立について検討する。
まず, 展開時の不公平性と期待損失に関する理論的境界を開発し, フェアネスと精度を不変表現学習を通じて完全に伝達できる条件を導出する。
これにより、トレーニングデータを用いて学習した公正MLモデルは、デプロイメント環境が変化しても高い公平性と正確性を有するように、学習アルゴリズムを設計する。
実世界のデータ実験により提案アルゴリズムが検証される。
モデル実装はhttps://github.com/pth1993/FATDMで公開されている。
関連論文リスト
- Ask Your Distribution Shift if Pre-Training is Right for You [74.18516460467019]
実際に、事前訓練されたモデルの微調整は、いくつかのケースではロバスト性を大幅に改善するが、他のケースではまったく改善しない。
分散シフト中のモデルの2つの障害モード – トレーニングデータの補間不足とバイアス – に注目する。
我々の研究は、親指の規則として、事前学習は、粗悪な外挿を緩和するがデータセットのバイアスを緩和する助けとなることを示唆している。
論文 参考訳(メタデータ) (2024-02-29T23:46:28Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
本研究では、ドメインシフトに対するロバスト性の障害の原因と、ドメインロバストモデルをトレーニングするためのアルゴリズムを提案する。
モデル脆性の鍵となる原因はドメイン過度な適合であり、新しいトレーニングアルゴリズムはドメイン一般仮説を抑え、奨励する。
論文 参考訳(メタデータ) (2023-03-05T21:41:16Z) - Preserving Fairness in AI under Domain Shift [15.820660013260584]
AIの公正性を保証するための既存のアルゴリズムは、単発トレーニング戦略を使用している。
ドメインシフトの下で公正な状態を維持するために公正なモデルを適用するアルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-01-29T06:13:40Z) - Fairness Reprogramming [42.65700878967251]
モデル再プログラミング手法を取り入れたFairRe Programと呼ばれる新しい汎用フェアネス学習パラダイムを提案する。
具体的には、FairRe Programはモデルを変更することができず、フェアネストリガと呼ばれる一連の摂動を入力に追加するケースについて検討している。
我々は,固定MLモデルの出力予測において,公平性トリガが効果的に人口統計バイアスを曖昧にすることができることを理論的および実証的に示す。
論文 参考訳(メタデータ) (2022-09-21T09:37:00Z) - Transferring Fairness under Distribution Shifts via Fair Consistency
Regularization [15.40257564187799]
本研究では,分散シフトの下でモデルフェアネスを伝達する方法について検討する。
ドメインシフトの下での転送精度の自己学習の成功に触発されて、グループフェアネスの転送に十分な条件が導出される。
論文 参考訳(メタデータ) (2022-06-26T06:19:56Z) - Domain Adaptation meets Individual Fairness. And they get along [48.95808607591299]
アルゴリズムフェアネスの介入は、機械学習モデルが分散シフトを克服するのに役立つことを示す。
特に,個人フェアネス(IF)の適切な概念を強制することで,MLモデルの分布外精度が向上することを示す。
論文 参考訳(メタデータ) (2022-05-01T16:19:55Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Model adaptation and unsupervised learning with non-stationary batch
data under smooth concept drift [8.068725688880772]
ほとんどの予測モデルは、トレーニングとテストデータは定常的なプロセスから生成されると仮定する。
我々は、データソースの非定常性に起因する段階的な概念の漂流のシナリオを考察する。
予測モデルの教師なし適応のための新しい反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-10T21:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。