Hierarchical Disentangled Representation for Invertible Image Denoising
and Beyond
- URL: http://arxiv.org/abs/2301.13358v1
- Date: Tue, 31 Jan 2023 01:24:34 GMT
- Title: Hierarchical Disentangled Representation for Invertible Image Denoising
and Beyond
- Authors: Wenchao Du, Hu Chen, Yi Zhang, and H. Yang
- Abstract summary: Inspired by a latent observation that noise tends to appear in the high-frequency part of the image, we propose a fully invertible denoising method.
We decompose the noisy image into clean low-frequency and hybrid high-frequency parts with an invertible transformation.
In this way, denoising is made tractable by inversely merging noiseless low and high-frequency parts.
- Score: 14.432771193620702
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image denoising is a typical ill-posed problem due to complex degradation.
Leading methods based on normalizing flows have tried to solve this problem
with an invertible transformation instead of a deterministic mapping. However,
the implicit bijective mapping is not explored well. Inspired by a latent
observation that noise tends to appear in the high-frequency part of the image,
we propose a fully invertible denoising method that injects the idea of
disentangled learning into a general invertible neural network to split noise
from the high-frequency part. More specifically, we decompose the noisy image
into clean low-frequency and hybrid high-frequency parts with an invertible
transformation and then disentangle case-specific noise and high-frequency
components in the latent space. In this way, denoising is made tractable by
inversely merging noiseless low and high-frequency parts. Furthermore, we
construct a flexible hierarchical disentangling framework, which aims to
decompose most of the low-frequency image information while disentangling noise
from the high-frequency part in a coarse-to-fine manner. Extensive experiments
on real image denoising, JPEG compressed artifact removal, and medical low-dose
CT image restoration have demonstrated that the proposed method achieves
competing performance on both quantitative metrics and visual quality, with
significantly less computational cost.
Related papers
- NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Joint End-to-End Image Compression and Denoising: Leveraging Contrastive
Learning and Multi-Scale Self-ONNs [18.71504105967766]
Noisy images are a challenge to image compression algorithms due to the inherent difficulty of compressing noise.
We propose a novel method integrating a multi-scale denoiser comprising of Self Organizing Operational Neural Networks, for joint image compression and denoising.
arXiv Detail & Related papers (2024-02-08T11:33:16Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
We propose a novel network architecture denoted as IGNet, in order to refine the frequency bands from low to high in a progressive manner.
With this design, more inter-frequency prior and information are utilized, thus the model size can be lightened while still perserves competitive results.
arXiv Detail & Related papers (2021-12-22T10:35:53Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
Flow-based joint Image and NOise model (FINO)
We propose a novel Flow-based joint Image and NOise model (FINO) that distinctly decouples the image and noise in the latent space and losslessly reconstructs them via a series of invertible transformations.
arXiv Detail & Related papers (2021-11-11T02:51:54Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
We propose blur, noise, and compression robust GAN (BNCR-GAN) to learn a clean image generator directly from degraded images.
Inspired by NR-GAN, BNCR-GAN uses a multiple-generator model composed of image, blur- Kernel, noise, and quality-factor generators.
We demonstrate the effectiveness of BNCR-GAN through large-scale comparative studies on CIFAR-10 and a generality analysis on FFHQ.
arXiv Detail & Related papers (2020-03-17T17:56:22Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.