論文の概要: Optimal Transport Perturbations for Safe Reinforcement Learning with Robustness Guarantees
- arxiv url: http://arxiv.org/abs/2301.13375v2
- Date: Thu, 28 Mar 2024 16:08:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:22:33.279048
- Title: Optimal Transport Perturbations for Safe Reinforcement Learning with Robustness Guarantees
- Title(参考訳): ロバスト性保証を用いた安全強化学習のための最適輸送摂動
- Authors: James Queeney, Erhan Can Ozcan, Ioannis Ch. Paschalidis, Christos G. Cassandras,
- Abstract要約: 我々は、最適な輸送コストの不確実性セットを用いてロバストネスを組み込んだ安全な強化学習フレームワークを導入する。
安全性の制約のある継続的制御タスクの実験では,本手法はロバストな性能を示しながら,デプロイ時の安全性を大幅に改善する。
- 参考スコア(独自算出の注目度): 14.107064796593225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robustness and safety are critical for the trustworthy deployment of deep reinforcement learning. Real-world decision making applications require algorithms that can guarantee robust performance and safety in the presence of general environment disturbances, while making limited assumptions on the data collection process during training. In order to accomplish this goal, we introduce a safe reinforcement learning framework that incorporates robustness through the use of an optimal transport cost uncertainty set. We provide an efficient implementation based on applying Optimal Transport Perturbations to construct worst-case virtual state transitions, which does not impact data collection during training and does not require detailed simulator access. In experiments on continuous control tasks with safety constraints, our approach demonstrates robust performance while significantly improving safety at deployment time compared to standard safe reinforcement learning.
- Abstract(参考訳): 深い強化学習の信頼できる展開には、ロバストさと安全性が不可欠である。
実世界の意思決定アプリケーションは、トレーニング中のデータ収集プロセスに限定的な仮定をしながら、一般的な環境障害の存在下で堅牢なパフォーマンスと安全性を保証するアルゴリズムを必要とする。
この目的を達成するために、最適な輸送コストの不確実性セットを用いてロバストネスを組み込んだ安全な強化学習フレームワークを導入する。
トレーニング中のデータ収集に影響を与えず,詳細なシミュレータアクセスを必要としない,最悪の仮想状態遷移を構築するための最適輸送摂動の適用に基づく効率的な実装を提供する。
安全制約のある継続的制御タスクの実験では,本手法は,標準的な安全強化学習と比較して,配置時の安全性を著しく向上させながら,堅牢な性能を示す。
関連論文リスト
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Searching for Optimal Runtime Assurance via Reachability and
Reinforcement Learning [2.422636931175853]
あるプラントのランタイム保証システム(RTA)は、バックアップコントローラで安全性を確保しながら、信頼できないまたは実験的なコントローラの運動を可能にする。
既存のRTA設計戦略は、過度に保守的であることで知られており、原則として、安全違反につながる可能性がある。
本稿では、最適RTA設計問題を定式化し、それを解決するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-06T14:45:57Z) - Iterative Reachability Estimation for Safe Reinforcement Learning [23.942701020636882]
安全制約付き強化学習(RL)環境のための新しいフレームワークRESPO(Reachability Estimation for Safe Policy Optimization)を提案する。
違反のないポリシーが存在する現実的な環境では、永続的な安全を維持しながら報酬を最適化します。
安全ガイム, PyBullet, および MuJoCo を用いた安全RL環境の多種多様な構成について, 提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-09-24T02:36:42Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
この研究は、ロボットシステムのための堅牢な安全維持コントローラのスケーラブルな合成を可能にする新しいアプローチを導入する。
安全を追求するフォールバックポリシーは、モデルエラーの最悪のケースの実現を促進するために、敵の「混乱」エージェントと共同で訓練される。
学習した制御ポリシーは本質的に安全性を保証するものではないが、リアルタイムの安全フィルタを構築するために使用される。
論文 参考訳(メタデータ) (2022-12-06T18:53:34Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Adaptive control of a mechatronic system using constrained residual
reinforcement learning [0.0]
本研究では,不確実な環境下での従来のコントローラの性能向上のための,シンプルで実用的で直感的な手法を提案する。
本手法は, 産業用モーションコントロールにおける従来の制御器が, 異なる動作条件に対応するために適応性よりも頑健であることを示す。
論文 参考訳(メタデータ) (2021-10-06T08:13:05Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
現実的なタスクのために強化学習エージェントを展開する場合、安全は重要な問題である。
非定常環境における安全な適応を実現するために,文脈認識型安全強化学習法(CASRL)を提案する。
提案アルゴリズムは,安全性とロバスト性の観点から,既存のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-01-02T23:52:22Z) - Conservative Safety Critics for Exploration [120.73241848565449]
強化学習(RL)における安全な探索の課題について検討する。
我々は、批評家を通じて環境状態の保守的な安全性推定を学習する。
提案手法は,破滅的故障率を著しく低く抑えながら,競争力のあるタスク性能を実現することができることを示す。
論文 参考訳(メタデータ) (2020-10-27T17:54:25Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。