論文の概要: A Modular Multi-stage Lightweight Graph Transformer Network for Human
Pose and Shape Estimation from 2D Human Pose
- arxiv url: http://arxiv.org/abs/2301.13403v1
- Date: Tue, 31 Jan 2023 04:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 17:32:47.235621
- Title: A Modular Multi-stage Lightweight Graph Transformer Network for Human
Pose and Shape Estimation from 2D Human Pose
- Title(参考訳): モジュラー多段軽量グラフトランスフォーマネットワークによる2次元人物ポーズと形状推定
- Authors: Ayman Ali, Ekkasit Pinyoanuntapong, Pu Wang, Mohsen Dorodchi
- Abstract要約: 提案手法では, 再現精度を犠牲にすることなく, 計算効率を優先する, ポーズに基づくヒューマンメッシュ再構築手法を提案する。
提案手法は,グラフトランスフォーマーを用いて2次元人間のポーズにおける構造的および暗黙的な関節関係を解析する2D-to-3Dリフトモジュールと,抽出したポーズ特徴とメッシュテンプレートを組み合わせたメッシュ回帰モジュールからなり,最終的なメッシュパラメータを生成する。
- 参考スコア(独自算出の注目度): 4.598337780022892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, we address the challenge faced by existing deep
learning-based human mesh reconstruction methods in balancing accuracy and
computational efficiency. These methods typically prioritize accuracy,
resulting in large network sizes and excessive computational complexity, which
may hinder their practical application in real-world scenarios, such as virtual
reality systems. To address this issue, we introduce a modular multi-stage
lightweight graph-based transformer network for human pose and shape estimation
from 2D human pose, a pose-based human mesh reconstruction approach that
prioritizes computational efficiency without sacrificing reconstruction
accuracy. Our method consists of a 2D-to-3D lifter module that utilizes graph
transformers to analyze structured and implicit joint correlations in 2D human
poses, and a mesh regression module that combines the extracted pose features
with a mesh template to produce the final human mesh parameters.
- Abstract(参考訳): 本研究では,既存の深層学習に基づくメッシュ再構成手法が直面する課題について,精度と計算効率のバランスをとることで解決する。
これらの手法は典型的には精度を優先し、ネットワークサイズが大きくなり、計算が複雑になり、仮想現実システムのような現実のシナリオにおける現実的な応用を妨げる可能性がある。
そこで本研究では,人間のポーズと形状を推定する多段軽量なグラフベースのトランスフォーマーネットワークを提案する。
提案手法は,グラフトランスフォーマーを用いて2次元人間のポーズにおける構造的および暗黙的な関節関係を解析する2D-to-3Dリフトモジュールと,抽出したポーズ特徴とメッシュテンプレートを組み合わせたメッシュ回帰モジュールとから構成される。
関連論文リスト
- StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation [74.07836010698801]
この問題に対処するために,SMPLベースのトランスフォーマーフレームワーク(SMPLer)を提案する。
SMPLerは、切り離された注意操作とSMPLベースのターゲット表現の2つの重要な要素を組み込んでいる。
SMPLerの既存の3次元人体形状に対する効果とポーズ推定方法の実証実験を行った。
論文 参考訳(メタデータ) (2024-04-23T17:59:59Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
自己教師付きヒューマンメッシュリカバリ手法は、3Dアノテーション付きベンチマークデータセットの可用性と多様性が制限されているため、一般化性が低い。
頑健だがスパースな表現(2Dキーポイント)からの相補的情報を利用した相互表現アライメントを提案する。
この適応的相互表現アライメントは、偏差から明示的に学習し、相補的な情報(疎表現からの豊かさと密表現からの堅牢さ)をキャプチャする。
論文 参考訳(メタデータ) (2022-09-10T04:47:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - Adversarial Parametric Pose Prior [106.12437086990853]
我々は、SMPLパラメータを現実的なポーズを生成する値に制限する事前学習を行う。
得られた先行学習は実データ分布の多様性をカバーし、2次元キーポイントからの3次元再構成の最適化を容易にし、画像からの回帰に使用する場合のポーズ推定精度を向上することを示す。
論文 参考訳(メタデータ) (2021-12-08T10:05:32Z) - A Lightweight Graph Transformer Network for Human Mesh Reconstruction
from 2D Human Pose [8.816462200869445]
GTRSは2次元の人間のポーズから人間のメッシュを再構築する。
我々は、Human3.6Mと3DPWデータセットの広範囲な評価により、GTRSの効率性と一般化を実証する。
論文 参考訳(メタデータ) (2021-11-24T18:48:03Z) - THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers [67.8628917474705]
THUNDRは、人の3Dポーズと形状を再構築するトランスフォーマーベースのディープニューラルネットワーク手法である。
完全教師付きモデルと自己教師型モデルの両方に対して,Human3.6Mと3DPWの最先端結果を示す。
野生で収集された難易度の高い人間のポーズに対して, 非常に堅固な3次元再構成性能を観察した。
論文 参考訳(メタデータ) (2021-06-17T09:09:24Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。