論文の概要: Learning Generalized Hybrid Proximity Representation for Image
Recognition
- arxiv url: http://arxiv.org/abs/2301.13459v1
- Date: Tue, 31 Jan 2023 07:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 17:14:49.677480
- Title: Learning Generalized Hybrid Proximity Representation for Image
Recognition
- Title(参考訳): 画像認識のための一般化ハイブリッド表現の学習
- Authors: Zhiyuan Li, Anca Ralescu
- Abstract要約: 画像認識のための幾何空間と確率空間の両方で距離メトリクスを学習できる新しい教師付き距離学習法を提案する。
ユークリッド空間における距離指標の学習に重点を置く従来の計量学習法とは対照的に,提案手法はハイブリッド手法でより優れた距離表現を学習することができる。
- 参考スコア(独自算出の注目度): 8.750658662419328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep metric learning techniques received attention, as the learned
distance representations are useful to capture the similarity relationship
among samples and further improve the performance of various of supervised or
unsupervised learning tasks. We propose a novel supervised metric learning
method that can learn the distance metrics in both geometric and probabilistic
space for image recognition. In contrast to the previous metric learning
methods which usually focus on learning the distance metrics in Euclidean
space, our proposed method is able to learn better distance representation in a
hybrid approach. To achieve this, we proposed a Generalized Hybrid Metric Loss
(GHM-Loss) to learn the general hybrid proximity features from the image data
by controlling the trade-off between geometric proximity and probabilistic
proximity. To evaluate the effectiveness of our method, we first provide
theoretical derivations and proofs of the proposed loss function, then we
perform extensive experiments on two public datasets to show the advantage of
our method compared to other state-of-the-art metric learning methods.
- Abstract(参考訳): 近年,学習距離表現がサンプル間の類似度関係を捉え,教師なし・教師なし学習タスクの性能向上に有用であることから,ディープメトリック学習手法が注目されている。
画像認識のための幾何空間と確率空間の両方で距離メトリクスを学習できる新しい教師付き距離学習法を提案する。
ユークリッド空間における距離指標の学習に重点を置く従来の計量学習法とは対照的に,提案手法はハイブリッド手法でより優れた距離表現を学習することができる。
これを実現するために,画像データから一般ハイブリッド近接特徴を学習するための一般化ハイブリッドメトリック損失(ghm-loss)を提案し,幾何学的近接と確率的近接とのトレードオフを制御した。
提案手法の有効性を評価するため,まず,提案した損失関数の理論的導出と証明を行い,提案手法の利点を他の最先端メトリック学習法と比較して示すために2つの公開データセットに対して広範な実験を行った。
関連論文リスト
- Hyp-UML: Hyperbolic Image Retrieval with Uncertainty-aware Metric
Learning [8.012146883983227]
メトリクス学習は画像検索と分類の訓練において重要な役割を果たしている。
双曲的埋め込みは階層的なデータ構造を表現するのにより効果的である。
本稿では,一般的なコントラスト学習と従来のマージンに基づく距離学習の2種類の不確実性を考慮した距離学習を提案する。
論文 参考訳(メタデータ) (2023-10-12T15:00:06Z) - Histopathology Image Classification using Deep Manifold Contrastive
Learning [8.590026259176806]
本稿では,特徴間の測地的距離を,病理組織学全体のスライド画像分類の類似度指標として活用する,新しいコントラスト学習の拡張を提案する。
その結果,提案手法は最先端のコサイン距離に基づくコントラスト学習法よりも優れていた。
論文 参考訳(メタデータ) (2023-06-26T07:02:07Z) - Learning Empirical Bregman Divergence for Uncertain Distance
Representation [3.9142982525021512]
本稿では,Bregman分散の根底にある凸関数のパラメータ化に基づくデータから直接,経験的Bregman分散を学習するための新しい手法を提案する。
提案手法は,他のSOTA深度学習法と比較して,一般的な5つのデータセットに対して効果的に動作し,特にパターン認識問題に対して有効である。
論文 参考訳(メタデータ) (2023-04-16T04:16:28Z) - Metric Learning as a Service with Covariance Embedding [7.5989847759545155]
メトリック学習は、クラス内およびクラス間の類似性を最大化し、最小化する。
既存のモデルは、分離可能な埋め込み空間を得るために主に距離測度に依存する。
高性能なディープラーニングアプリケーションのためのサービスとしてメトリック学習を有効にするためには、クラス間の関係も賢明に扱うべきだ、と我々は主張する。
論文 参考訳(メタデータ) (2022-11-28T10:10:59Z) - Neural Bregman Divergences for Distance Learning [60.375385370556145]
本稿では,入力凸ニューラルネットワークを用いて任意のブレグマン分岐を微分可能な方法で学習するための新しいアプローチを提案する。
提案手法は,新しいタスクと以前に研究されたタスクのセットにおいて,より忠実に相違点を学習することを示す。
我々のテストはさらに、既知の非対称なタスクにまで拡張するが、Bregmanでないタスクでは、不特定性にもかかわらず、我々のメソッドは競争的に機能する。
論文 参考訳(メタデータ) (2022-06-09T20:53:15Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Towards Interpretable Deep Metric Learning with Structural Matching [86.16700459215383]
より透過的な埋め込み学習のための深層解釈可能なメトリック学習(DIML)法を提案する。
本手法は,既製のバックボーンネットワークやメトリック学習手法に適用可能な,モデルに依存しない手法である。
我々は,CUB200-2011,Cars196,Stanford Online Productsの3つの大規模メトリクス学習ベンチマークで評価を行った。
論文 参考訳(メタデータ) (2021-08-12T17:59:09Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
Single-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE) を提案する。
具体的には、トレーニングプロセスにおいて、SIMPLEが高性能なトップダウンパイプラインからのポーズ知識を模倣できるようにする。
さらに、SIMPLEは人間検出とポーズ推定を統一的なポイントラーニングフレームワークとして定式化し、単一ネットワークで相互に補完する。
論文 参考訳(メタデータ) (2021-04-06T13:12:51Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
我々は,距離学習アルゴリズムの一般化とロバスト性を改善するために,入力空間に逆のマージンを付与することを提唱する。
アルゴリズム的ロバスト性の理論手法を用いることにより,拡張マージンは一般化能力に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。