論文の概要: Auxiliary Learning as an Asymmetric Bargaining Game
- arxiv url: http://arxiv.org/abs/2301.13501v1
- Date: Tue, 31 Jan 2023 09:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 17:05:48.537759
- Title: Auxiliary Learning as an Asymmetric Bargaining Game
- Title(参考訳): 非対称交渉ゲームとしての補助学習
- Authors: Aviv Shamsian, Aviv Navon, Neta Glazer, Kenji Kawaguchi, Gal Chechik,
Ethan Fetaya
- Abstract要約: 補助学習におけるタスクのバランスをとるために,AuxiNashという新しい手法を提案する。
本報告では,主課題の性能に対する貢献に基づいて,タスクの獲得能力を学ぶための効率的な手順について述べる。
複数のマルチタスクベンチマークでAuxiNashを評価し、競合する手法よりも一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 50.826710465264505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auxiliary learning is an effective method for enhancing the generalization
capabilities of trained models, particularly when dealing with small datasets.
However, this approach may present several difficulties: (i) optimizing
multiple objectives can be more challenging, and (ii) how to balance the
auxiliary tasks to best assist the main task is unclear. In this work, we
propose a novel approach, named AuxiNash, for balancing tasks in auxiliary
learning by formalizing the problem as generalized bargaining game with
asymmetric task bargaining power. Furthermore, we describe an efficient
procedure for learning the bargaining power of tasks based on their
contribution to the performance of the main task and derive theoretical
guarantees for its convergence. Finally, we evaluate AuxiNash on multiple
multi-task benchmarks and find that it consistently outperforms competing
methods.
- Abstract(参考訳): 補助学習は、特に小さなデータセットを扱う場合、訓練されたモデルの一般化能力を高める効果的な方法である。
しかし、このアプローチにはいくつかの困難がある。
(i)複数の目的を最適化することがより困難になり、
(II)メインタスクを最大限に支援するために補助タスクのバランスをとる方法は不明である。
本研究では,非対称なタスク交渉力を持つ汎用交渉ゲームとして問題を定式化し,補助学習におけるタスクのバランスをとるための新しいアプローチであるオーキナッシュを提案する。
さらに、主タスクの性能に対する貢献度に基づいてタスクの交渉力を学習するための効率的な手順について述べ、その収束に関する理論的保証を導出する。
最後に、複数のマルチタスクベンチマークで auxinash を評価し、競合するメソッドを一貫して上回っています。
関連論文リスト
- Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
マルチタスク強化学習において、ディープニューラルネットワークを効果的に活用するためのタスク間の表現の共有の利点について検討する。
我々は,タスク間で表現を共有するのに便利な条件を強調する理論的保証を提供することで,これを証明している。
論文 参考訳(メタデータ) (2024-01-17T19:31:21Z) - Auxiliary task discovery through generate-and-test [7.800263769988046]
補助的なタスクは、エージェントに補助的な予測と制御目的を学習させることで、データ効率を向上させる。
本稿では,表現学習のアイデアに基づく強化学習における補助的タスク発見へのアプローチについて検討する。
本研究は,これらの特徴が主課題にどの程度有用かに基づいて,補助課題の有用性を示す新しい尺度を提案する。
論文 参考訳(メタデータ) (2022-10-25T22:04:37Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
マルチタスク学習は、目標タスクを補助タスクと協調的に最適化することで、より優れたモデル一般化を約束する。
自己監督型(補助的)タスクと密接な予測(目標)タスクを共同でトレーニングすることで、目標タスクの性能を継続的に向上し、補助タスクのラベル付けの必要性を排除できることが判明した。
論文 参考訳(メタデータ) (2022-10-13T17:59:16Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
マルチタスク学習は、パフォーマンスの一般化を改善するために相関タスクを使用する。
タスクは互いに衝突することが多いため、複数のタスクの勾配をどのように組み合わせるべきかを定義するのは難しい。
バックプロパゲーション中の各タスクの重要度を調整する動的バイアスを生成するために,勾配の時間的挙動を考慮した手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T01:52:34Z) - Transfer Learning in Conversational Analysis through Reusing
Preprocessing Data as Supervisors [52.37504333689262]
単一タスク学習におけるノイズの多いラベルの使用は、過度に適合するリスクを増大させる。
補助的なタスクは、同じトレーニング中に一次タスク学習のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2021-12-02T08:40:42Z) - Auxiliary Task Reweighting for Minimum-data Learning [118.69683270159108]
教師付き学習は大量のトレーニングデータを必要とし、ラベル付きデータが不足しているアプリケーションを制限する。
データ不足を補う1つの方法は、補助的なタスクを利用して、メインタスクに対する追加の監視を提供することである。
そこで本研究では,主タスクにおけるデータ要求を減らし,補助タスクを自動的に重み付けする手法を提案する。
論文 参考訳(メタデータ) (2020-10-16T08:45:37Z) - A Brief Review of Deep Multi-task Learning and Auxiliary Task Learning [0.0]
マルチタスク学習(MTL)は、複数の学習タスクを同時に最適化する。
パフォーマンスを高めるために、補助的なタスクをメインタスクに追加することができる。
論文 参考訳(メタデータ) (2020-07-02T14:23:39Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
補助的なタスクによるニューラルネットワークのトレーニングは、関心のあるメインタスクのパフォーマンスを改善するための一般的なプラクティスである。
そこで我々は,暗黙の識別に基づく両課題を対象とした新しいフレームワークAuxiLearnを提案する。
まず、有用な補助関数が知られている場合、全ての損失を1つのコヒーレントな目的関数に組み合わせたネットワークの学習を提案する。
第二に、有用な補助タスクが知られていない場合、意味のある新しい補助タスクを生成するネットワークの学習方法について述べる。
論文 参考訳(メタデータ) (2020-06-22T19:35:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。