Probabilistic Point Cloud Modeling via Self-Organizing Gaussian Mixture
Models
- URL: http://arxiv.org/abs/2302.00047v1
- Date: Tue, 31 Jan 2023 19:28:00 GMT
- Title: Probabilistic Point Cloud Modeling via Self-Organizing Gaussian Mixture
Models
- Authors: Kshitij Goel, Nathan Michael, Wennie Tabib
- Abstract summary: We present a continuous probabilistic modeling methodology for spatial point cloud data using finite Gaussian Mixture Models (GMMs)
We use a self-organizing principle from information-theoretic learning to automatically adapt the complexity of the GMM model based on the relevant information in the sensor data.
The approach is evaluated against existing point cloud modeling techniques on real-world data with varying degrees of scene complexity.
- Score: 19.10047652180224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter presents a continuous probabilistic modeling methodology for
spatial point cloud data using finite Gaussian Mixture Models (GMMs) where the
number of components are adapted based on the scene complexity. Few
hierarchical and adaptive methods have been proposed to address the challenge
of balancing model fidelity with size. Instead, state-of-the-art mapping
approaches require tuning parameters for specific use cases, but do not
generalize across diverse environments. To address this gap, we utilize a
self-organizing principle from information-theoretic learning to automatically
adapt the complexity of the GMM model based on the relevant information in the
sensor data. The approach is evaluated against existing point cloud modeling
techniques on real-world data with varying degrees of scene complexity.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Incremental Multimodal Surface Mapping via Self-Organizing Gaussian
Mixture Models [1.0878040851638]
This letter describes an incremental multimodal surface mapping methodology, which represents the environment as a continuous probabilistic model.
The strategy employed in this work utilizes Gaussian mixture models (GMMs) to represent the environment.
To bridge this gap, this letter introduces a spatial hash map for rapid GMM submap extraction combined with an approach to determine relevant and redundant data in a point cloud.
arXiv Detail & Related papers (2023-09-19T19:49:03Z) - Bayesian Learning of Coupled Biogeochemical-Physical Models [28.269731698116257]
Predictive models for marine ecosystems are used for a variety of needs.
Due to sparse measurements and limited understanding of the myriad of ocean processes, there is significant uncertainty.
We develop a Bayesian model learning methodology that allows handling in the space of candidate models and discovery of new models.
arXiv Detail & Related papers (2022-11-12T17:49:18Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.