論文の概要: Adaptive sparseness for correntropy-based robust regression via
automatic relevance determination
- arxiv url: http://arxiv.org/abs/2302.00082v1
- Date: Tue, 31 Jan 2023 20:23:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 13:51:18.182168
- Title: Adaptive sparseness for correntropy-based robust regression via
automatic relevance determination
- Title(参考訳): 相関性に基づくロバスト回帰に対する適応的スパース性
- Authors: Yuanhao Li, Badong Chen, Okito Yamashita, Natsue Yoshimura, Yasuharu
Koike
- Abstract要約: 我々は,最大コレントロピー基準(MCC)に基づくロバスト回帰アルゴリズムと自動妥当性判定(ARD)手法をベイズフレームワークに統合する。
我々は、MCCから固有のノイズ仮定を用いて、明示的な可能性関数を導出し、ARD前の最大後部推定(MAP)を実現する。
MCC-ARDはL1正規化MCCよりも優れた予測性能と特徴選択能力を実現している。
- 参考スコア(独自算出の注目度): 17.933460891374498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparseness and robustness are two important properties for many machine
learning scenarios. In the present study, regarding the maximum correntropy
criterion (MCC) based robust regression algorithm, we investigate to integrate
the MCC method with the automatic relevance determination (ARD) technique in a
Bayesian framework, so that MCC-based robust regression could be implemented
with adaptive sparseness. To be specific, we use an inherent noise assumption
from the MCC to derive an explicit likelihood function, and realize the maximum
a posteriori (MAP) estimation with the ARD prior by variational Bayesian
inference. Compared to the existing robust and sparse L1-regularized MCC
regression, the proposed MCC-ARD regression can eradicate the troublesome
tuning for the regularization hyper-parameter which controls the regularization
strength. Further, MCC-ARD achieves superior prediction performance and feature
selection capability than L1-regularized MCC, as demonstrated by a noisy and
high-dimensional simulation study.
- Abstract(参考訳): スパースネスとロバストネスは多くの機械学習シナリオにおいて2つの重要な特性である。
本研究では,mcc(maximum correntropy criterion)に基づくロバスト回帰アルゴリズムについて,mcc法とベイズフレームワークにおける自動妥当性判定(ard)法を統合することにより,mccに基づくロバスト回帰を適応的スパース性で実装できることを示す。
具体的には, MCC の固有雑音仮定を用いて明示的な確率関数を導出し, 変分ベイズ推定に先立って ARD を用いた最大後続推定を実現する。
既存のロバストかつスパースなMCC回帰と比較して、MCC-ARD回帰は正規化強度を制御する正規化ハイパーパラメータの厄介なチューニングを根絶することができる。
さらに, MCC-ARDは, L1正規化MCCよりも優れた予測性能と特徴選択能力を実現している。
関連論文リスト
- Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework [35.79393879150088]
本稿では,制約満足度を高い確率で保証する頑健なGP-MPCの定式化を提案する。
提案手法は,既存手法とリアルタイム実現可能な時間に比較して,改良された到達可能集合近似を強調した。
論文 参考訳(メタデータ) (2024-09-13T08:15:20Z) - Monte Carlo Planning for Stochastic Control on Constrained Markov Decision Processes [1.445706856497821]
本研究は,MDP フレームワークである textttSD-MDP を定義し,MDP の遷移と報酬ダイナミクスの因果構造を解析する。
モンテカルロサンプリングから独立な値推定を行うことにより、最適ポリシの下での値関数の推定誤差に関する理論的保証を導出する。
論文 参考訳(メタデータ) (2024-06-23T16:22:40Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Online Probabilistic Model Identification using Adaptive Recursive MCMC [8.465242072268019]
適応再帰的マルコフ連鎖モンテカルロ法(ARMCMC)を提案する。
モデルパラメータの確率密度関数全体を計算しながら、従来のオンライン手法の欠点を解消する。
本研究では,ソフト曲げアクチュエータとハント・クロスリー動的モデルを用いてパラメータ推定を行った。
論文 参考訳(メタデータ) (2022-10-23T02:06:48Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Cluster Regularization via a Hierarchical Feature Regression [0.0]
本稿では,階層的特徴回帰(HFR)という新しいクラスタベース正規化を提案する。
機械学習とグラフ理論の領域からの洞察を動員し、予測セットの教師付き階層表現に沿ってパラメータを推定する。
経済成長予測への応用は、実証的な環境でのHFRの有効性を示すために用いられる。
論文 参考訳(メタデータ) (2021-07-10T13:03:01Z) - Partial Maximum Correntropy Regression for Robust Trajectory Decoding
from Noisy Epidural Electrocorticographic Signals [22.202519467049136]
Partial Least Square Regression (PLSR)アルゴリズムは、脳-コンピュータインタフェースにおける相関脳記録から連続変数を予測する特別な能力を示す。
本研究の目的は、PLSRの頑健なバージョンであるPartial Maximum Correntropy Regression (PMCR)を提案することである。
従来のPLSRと最先端の変種と比較して、PMCRは、汚染されたトレーニングセットを持つ3つの異なるパフォーマンス指標に対して優れた予測能力を実現した。
論文 参考訳(メタデータ) (2021-06-23T05:22:46Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。