論文の概要: Continual Segment: Towards a Single, Unified and Accessible Continual
Segmentation Model of 143 Whole-body Organs in CT Scans
- arxiv url: http://arxiv.org/abs/2302.00162v4
- Date: Sun, 3 Sep 2023 20:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 06:46:01.444254
- Title: Continual Segment: Towards a Single, Unified and Accessible Continual
Segmentation Model of 143 Whole-body Organs in CT Scans
- Title(参考訳): 連続セグメント:CTスキャンにおける143個の全身臓器の単一・統一・アクセス可能な連続セグメントモデル
- Authors: Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Ke Yan, Le Lu, Minfeng Xu,
Jingren Zhou, Qifeng Wang, Jia Ge, Mingchen Gao, Xianghua Ye, Dakai Jin
- Abstract要約: 全身143の臓器をセグメント化するための1つの深部分割モデルを学習するための新しいアーキテクチャCSS学習フレームワークを提案する。
私たちは4つのデータセットから2500人以上の患者の3DCTをトレーニングし、検証しました。
- 参考スコア(独自算出の注目度): 31.388497540849297
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep learning empowers the mainstream medical image segmentation methods.
Nevertheless current deep segmentation approaches are not capable of
efficiently and effectively adapting and updating the trained models when new
incremental segmentation classes (along with new training datasets or not) are
required to be added. In real clinical environment, it can be preferred that
segmentation models could be dynamically extended to segment new organs/tumors
without the (re-)access to previous training datasets due to obstacles of
patient privacy and data storage. This process can be viewed as a continual
semantic segmentation (CSS) problem, being understudied for multi-organ
segmentation. In this work, we propose a new architectural CSS learning
framework to learn a single deep segmentation model for segmenting a total of
143 whole-body organs. Using the encoder/decoder network structure, we
demonstrate that a continually-trained then frozen encoder coupled with
incrementally-added decoders can extract and preserve sufficiently
representative image features for new classes to be subsequently and validly
segmented. To maintain a single network model complexity, we trim each decoder
progressively using neural architecture search and teacher-student based
knowledge distillation. To incorporate with both healthy and pathological
organs appearing in different datasets, a novel anomaly-aware and confidence
learning module is proposed to merge the overlapped organ predictions,
originated from different decoders. Trained and validated on 3D CT scans of
2500+ patients from four datasets, our single network can segment total 143
whole-body organs with very high accuracy, closely reaching the upper bound
performance level by training four separate segmentation models (i.e., one
model per dataset/task).
- Abstract(参考訳): 深層学習は、主流の医療画像セグメンテーション方法を促進する。
それでも現在のディープセグメンテーションアプローチでは、新しいインクリメンタルセグメンテーションクラス(新しいトレーニングデータセットなど)を追加する必要がある場合、トレーニングされたモデルの効率的かつ効果的な適応と更新ができない。
実際の臨床環境では、患者のプライバシやデータストレージの障害により、以前のトレーニングデータセットに(再)アクセスすることなく、セグメント化モデルを動的に新しい臓器や腫瘍に拡張することが望ましい。
このプロセスは連続的セマンティックセグメンテーション(CSS)問題と見なすことができ、マルチ組織セグメンテーションのために検討されている。
本研究では,143個の全身臓器をセグメント化するための1つの深部分割モデルを学習するための新しいアーキテクチャCSS学習フレームワークを提案する。
エンコーダ/デコーダネットワーク構造を用いて、段階的に付加されたデコーダと組み合わされた連続的に訓練された冷凍エンコーダが、新しいクラスを後続かつ有効にセグメント化するための十分な代表画像特徴を抽出し保存できることを実証する。
単一ネットワークモデルの複雑性を維持するために,ニューラルネットワーク探索と教師-学生による知識蒸留を用いて,各デコーダを段階的にトリミングする。
異なるデータセットに現れる健全な臓器と病理組織の両方を組み込むため、異なるデコーダに由来する重複する臓器の予測をマージするために、新しい異常認識および信頼性学習モジュールが提案されている。
4つのデータセットから2500人以上の患者の3次元CTスキャンをトレーニングし、検証し、我々の1つのネットワークは、合計143体の臓器を非常に高い精度で分割することができ、4つの別々のセグメンテーションモデル(データセット/タスク毎の1モデル)をトレーニングすることで、上界のパフォーマンスレベルに近づきます。
関連論文リスト
- Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation [10.746776960260297]
軽量低ランク適応 (LoRA) を用いた新しい連続体器官分割モデルを提案する。
まず、最初のタスクでピラミッドビジョントランスフォーマー(PVT)ベースセグメンテーションモデルをトレーニングし、その後、新しい学習タスク毎に凍結モデルに軽量でトレーニング可能なLoRAパラメータを継続的に追加する。
提案モデルでは, 破滅的忘れを伴わず, 低パラメータ増加率を維持しながら, 新しい臓器を連続的に分割する。
論文 参考訳(メタデータ) (2024-10-07T02:00:13Z) - Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal Computed Tomography [50.08496922659307]
本稿では、単一のモデルであるUniversal Modelが複数の公開データセットに対処し、新しいクラスに適応することを可能にするユニバーサルフレームワークを提案する。
まず,大規模言語モデルからの言語埋め込みを利用した新しい言語駆動パラメータ生成手法を提案する。
第二に、従来の出力層は軽量でクラス固有のヘッドに置き換えられ、ユニバーサルモデルでは25の臓器と6種類の腫瘍を同時に分割することができる。
論文 参考訳(メタデータ) (2024-05-28T16:55:15Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts [62.55349777609194]
我々は、SATと呼ばれるテキストプロンプトによって駆動される放射線学的スキャンにおいて、任意のセグメンテーションを可能にするモデルを構築することを目指している。
トレーニングのために、最大かつ最も包括的なセグメンテーションデータセットを構築します。
我々はSAT-Nano(110Mパラメータ)とSAT-Pro(447Mパラメータ)をトレーニングし、データセット/サブセット毎にトレーニングされた72の専門家nnU-Netに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-28T18:16:00Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Tailored Multi-Organ Segmentation with Model Adaptation and Ensemble [22.82094545786408]
マルチ組織セグメンテーションは、医用画像解析の基本的な課題である。
高価な労働コストと専門知識のため、多臓器アノテーションの入手は通常制限される。
本稿では,モデル適応段とモデルアンサンブル段からなる新しい2段法を提案する。
論文 参考訳(メタデータ) (2023-04-14T13:39:39Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - One Model is All You Need: Multi-Task Learning Enables Simultaneous
Histology Image Segmentation and Classification [3.8725005247905386]
組織領域のセグメンテーションと分類のためのマルチタスク学習手法を提案する。
一つのネットワークで同時予測を可能にする。
また,機能共有の結果,学習した表現が下流タスクの改善に有効であることを示す。
論文 参考訳(メタデータ) (2022-02-28T20:22:39Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - DoDNet: Learning to segment multi-organ and tumors from multiple
partially labeled datasets [102.55303521877933]
本稿では,複数の臓器と腫瘍を部分的にラベル付けしたデータセット上に分割する動的オンデマンドネットワーク(DoDNet)を提案する。
DoDNetは共有エンコーダデコーダアーキテクチャ、タスク符号化モジュール、動的畳み込みフィルタを生成するコントローラ、そして単一だが動的セグメンテーションヘッドで構成されている。
論文 参考訳(メタデータ) (2020-11-20T04:56:39Z) - 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone
Segmentation in Upper Bodies [1.2023648183416153]
本稿では,多ラベル環境下での3次元セグメンテーションネットワークの訓練の複雑さについて論じる。
ネットワークアーキテクチャ、損失関数、データ拡張に必要となる変更を示す。
その結果,CTスキャンから学習した100以上の骨を同時に分割し,その頑健さを実証した。
論文 参考訳(メタデータ) (2020-10-14T12:54:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。