論文の概要: Deep Learning Approach to Predict Hemorrhage in Moyamoya Disease
- arxiv url: http://arxiv.org/abs/2302.00188v1
- Date: Wed, 1 Feb 2023 02:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 13:43:46.223808
- Title: Deep Learning Approach to Predict Hemorrhage in Moyamoya Disease
- Title(参考訳): モヤモヤ病の出血予測のための深層学習アプローチ
- Authors: Meng Zhao, Yonggang Ma, Qian Zhang, Jizong Zhao
- Abstract要約: 本研究の目的は,モヤモヤ病の出血を予測するための3つの機械学習分類アルゴリズムを開発することである。
提案したANNフレームワークは成人MDD患者の出血の可能性を予測するための有効なツールとなる可能性がある。
- 参考スコア(独自算出の注目度): 4.262366651054988
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objective: Reliable tools to predict moyamoya disease (MMD) patients at risk
for hemorrhage could have significant value. The aim of this paper is to
develop three machine learning classification algorithms to predict hemorrhage
in moyamoya disease. Methods: Clinical data of consecutive MMD patients who
were admitted to our hospital between 2009 and 2015 were reviewed.
Demographics, clinical, radiographic data were analyzed to develop artificial
neural network (ANN), support vector machine (SVM), and random forest models.
Results: We extracted 33 parameters, including 11 demographic and 22
radiographic features as input for model development. Of all compared
classification results, ANN achieved the highest overall accuracy of 75.7% (95%
CI, 68.6%-82.8%), followed by SVM with 69.2% (95% CI, 56.9%-81.5%) and random
forest with 70.0% (95% CI, 57.0%-83.0%). Conclusions: The proposed ANN
framework can be a potential effective tool to predict the possibility of
hemorrhage among adult MMD patients based on clinical information and
radiographic features.
- Abstract(参考訳): 目的: モヤモヤ病(mmd)患者の出血リスクを予測するための信頼できるツールが有用である。
本研究の目的はモヤモヤ病の出血を予測する3つの機械学習分類アルゴリズムの開発である。
方法:2009年から2015年の間に当院に入院したMDD患者の臨床データについて検討した。
人口統計,臨床データ,放射線データを分析し,ニューラルネットワーク(ann),サポートベクターマシン(svm),ランダムフォレストモデルを開発した。
結果: モデル開発のための入力として, 人口統計学的特徴を含む33のパラメータを抽出した。
比較した分類結果の中で、annは75.7% (95% ci, 68.6%-82.8%)、svmは69.2% (95% ci, 56.9%-81.5%)、ランダム森林は70.0% (95% ci, 57.0%-83.0%) であった。
結論: ANN フレームワークは,成人MDD 患者の臨床情報と放射線学的特徴に基づいて出血の可能性を予測するための有効なツールとして有用である。
関連論文リスト
- Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
本研究の目的は,臨床専門家が院内死亡を予測できるように,解釈可能かつ正確なMLモデルを開発することである。
特定基準に基づいてMIMIC-IIIデータベースからICU患者の記録を分析し,関連データを抽出した。
ランダムフォレストモデルは敗血症関連院内死亡の予測に最も効果的であった。
論文 参考訳(メタデータ) (2024-08-03T00:28:25Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-07-19T11:17:42Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Robust Meta-Model for Predicting the Need for Blood Transfusion in
Non-traumatic ICU Patients [10.169599503547134]
ICU設定での貧血や凝固症管理に不可欠な輸血は、効果的な資源配分と患者のリスク評価の正確な予測を必要とする。
本研究の目的は,多種多様な非外傷性ICU患者に対して,今後24時間にわたって輸血の必要性を予測できる高度な機械学習モデルを開発することである。
論文 参考訳(メタデータ) (2024-01-01T23:25:48Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。