Simple yet Effective Gradient-Free Graph Convolutional Networks
- URL: http://arxiv.org/abs/2302.00371v1
- Date: Wed, 1 Feb 2023 11:00:24 GMT
- Title: Simple yet Effective Gradient-Free Graph Convolutional Networks
- Authors: Yulin Zhu, Xing Ai, Qimai Li, Xiao-Ming Wu, Kai Zhou
- Abstract summary: Linearized Graph Neural Networks (GNNs) have attracted great attention in recent years for graph representation learning.
In this paper, we relate over-smoothing with the vanishing gradient phenomenon and craft a gradient-free training framework.
Our methods achieve better and more stable performances on node classification tasks with varying depths and cost much less training time.
- Score: 20.448409424929604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linearized Graph Neural Networks (GNNs) have attracted great attention in
recent years for graph representation learning. Compared with nonlinear Graph
Neural Network (GNN) models, linearized GNNs are much more time-efficient and
can achieve comparable performances on typical downstream tasks such as node
classification. Although some linearized GNN variants are purposely crafted to
mitigate ``over-smoothing", empirical studies demonstrate that they still
somehow suffer from this issue. In this paper, we instead relate over-smoothing
with the vanishing gradient phenomenon and craft a gradient-free training
framework to achieve more efficient and effective linearized GNNs which can
significantly overcome over-smoothing and enhance the generalization of the
model. The experimental results demonstrate that our methods achieve better and
more stable performances on node classification tasks with varying depths and
cost much less training time.
Related papers
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation.
No previous research has tackled the cost during the inference.
This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques.
arXiv Detail & Related papers (2024-10-19T06:27:24Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Fast and Effective GNN Training with Linearized Random Spanning Trees [20.73637495151938]
We present a new effective and scalable framework for training GNNs in node classification tasks.
Our approach progressively refines the GNN weights on an extensive sequence of random spanning trees.
The sparse nature of these path graphs substantially lightens the computational burden of GNN training.
arXiv Detail & Related papers (2023-06-07T23:12:42Z) - LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation [51.552170474958736]
We propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning.
LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN.
Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks.
arXiv Detail & Related papers (2023-02-03T02:33:07Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
We propose a new simple, and efficient method to alleviate the effect of the over-smoothing problem in GNNs.
Our method can be used in combination with other methods to give the best performance.
arXiv Detail & Related papers (2023-01-07T19:26:04Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
We present Gradient Gating (G$2$), a novel framework for improving the performance of Graph Neural Networks (GNNs)
Our framework is based on gating the output of GNN layers with a mechanism for multi-rate flow of message passing information across nodes of the underlying graph.
arXiv Detail & Related papers (2022-10-02T13:19:48Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.