LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation
- URL: http://arxiv.org/abs/2302.01503v2
- Date: Thu, 1 Jun 2023 00:49:33 GMT
- Title: LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation
- Authors: Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, Xiaorui Liu
- Abstract summary: We propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning.
LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN.
Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks.
- Score: 51.552170474958736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have demonstrated the benefits of capturing long-distance
dependency in graphs by deeper graph neural networks (GNNs). But deeper GNNs
suffer from the long-lasting scalability challenge due to the neighborhood
explosion problem in large-scale graphs. In this work, we propose to capture
long-distance dependency in graphs by shallower models instead of deeper
models, which leads to a much more efficient model, LazyGNN, for graph
representation learning. Moreover, we demonstrate that LazyGNN is compatible
with existing scalable approaches (such as sampling methods) for further
accelerations through the development of mini-batch LazyGNN. Comprehensive
experiments demonstrate its superior prediction performance and scalability on
large-scale benchmarks. The implementation of LazyGNN is available at
https://github.com/RXPHD/Lazy_GNN.
Related papers
- Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNs are a powerful family of neural networks for learning over graphs.
scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing.
We propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs.
arXiv Detail & Related papers (2023-06-18T03:33:46Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
shallow GNNs are more common due to the well-known over-smoothing problem facing deeper GNNs.
We propose a novel approach with the help of neural architecture search (NAS), which is dubbed LRGNN (Long-Range Graph Neural Networks)
arXiv Detail & Related papers (2023-02-17T03:40:17Z) - Simple yet Effective Gradient-Free Graph Convolutional Networks [20.448409424929604]
Linearized Graph Neural Networks (GNNs) have attracted great attention in recent years for graph representation learning.
In this paper, we relate over-smoothing with the vanishing gradient phenomenon and craft a gradient-free training framework.
Our methods achieve better and more stable performances on node classification tasks with varying depths and cost much less training time.
arXiv Detail & Related papers (2023-02-01T11:00:24Z) - Characterizing the Efficiency of Graph Neural Network Frameworks with a
Magnifying Glass [10.839902229218577]
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks.
Recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs.
It is unknown how much the frameworks are 'eco-friendly' from a green computing perspective.
arXiv Detail & Related papers (2022-11-06T04:22:19Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Attentive Graph Neural Networks for Few-Shot Learning [74.01069516079379]
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks.
Despite its powerful capacity to learn and generalize the model from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep.
We propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism.
arXiv Detail & Related papers (2020-07-14T07:43:09Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.