Digital Twin Applications in Urban Logistics: An Overview
- URL: http://arxiv.org/abs/2302.00484v1
- Date: Wed, 1 Feb 2023 14:48:01 GMT
- Title: Digital Twin Applications in Urban Logistics: An Overview
- Authors: Abdo Abouelrous, Laurens Bliek, Yingqian Zhang
- Abstract summary: Digital twins (DTs) are virtual replicas of real-life physical systems.
This paper provides a framework by which DTs could be easily adapted to urban logistics networks.
- Score: 4.084365114504618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban traffic attributed to commercial and industrial transportation is
observed to largely affect living standards in cities due to external effects
pertaining to pollution and congestion. In order to counter this, smart cities
deploy technological tools to achieve sustainability. Such tools include
Digital Twins (DT)s which are virtual replicas of real-life physical systems.
Research suggests that DTs can be very beneficial in how they control a
physical system by constantly optimizing its performance. The concept has been
extensively studied in other technology-driven industries like manufacturing.
However, little work has been done with regards to their application in urban
logistics. In this paper, we seek to provide a framework by which DTs could be
easily adapted to urban logistics networks. To do this, we provide a
characterization of key factors in urban logistics for dynamic decision-making.
We also survey previous research on DT applications in urban logistics as we
found that a holistic overview is lacking. Using this knowledge in combination
with the characterization, we produce a conceptual model that describes the
ontology, learning capabilities and optimization prowess of an urban logistics
digital twin through its quantitative models. We finish off with a discussion
on potential research benefits and limitations based on previous research and
our practical experience.
Related papers
- LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation [60.920536939067524]
We introduce LogiCity, the first simulator based on customizable first-order logic (FOL) for an urban-like environment with multiple dynamic agents.
LogiCity models diverse urban elements using semantic and spatial concepts, such as IsAmbulance(X) and IsClose(X, Y)
Key feature of LogiCity is its support for user-configurable abstractions, enabling customizable simulation complexities for logical reasoning.
arXiv Detail & Related papers (2024-11-01T17:59:46Z) - Leveraging Generative AI for Urban Digital Twins: A Scoping Review on the Autonomous Generation of Urban Data, Scenarios, Designs, and 3D City Models for Smart City Advancement [7.334114326621768]
Generative Artificial Intelligence (AI) models have demonstrated their unique values in data and code generation.
The survey starts with the introduction of popular generative AI models with their application areas, followed by a review of the existing urban science applications.
Based on the review, this survey discusses potential opportunities and technical strategies that integrate generative AI models into the next-generation urban digital twins.
arXiv Detail & Related papers (2024-05-29T19:23:07Z) - Advancing Transportation Mode Share Analysis with Built Environment: Deep Hybrid Models with Urban Road Network [12.349403667141559]
We propose deep hybrid models (DHM) which directly combine road networks and sociodemographic features as inputs for travel mode share analysis.
In experiments of mode share prediction in Chicago, results demonstrate that DHM can provide valuable spatial insights into the sociodemographic structure.
arXiv Detail & Related papers (2024-05-23T00:59:00Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - A New Era of Mobility: Exploring Digital Twin Applications in Autonomous
Vehicular Systems [0.0]
Digital twins (DTs) are virtual representations of physical objects or processes that can collect information from the real environment to represent, validate, and replicate the physical twin's present and future behavior.
DTs are becoming increasingly prevalent in a variety of fields, including manufacturing, automobiles, medicine, smart cities, and other related areas.
We addressed DTs and their essential characteristics, emphasized on accurate data collection, real-time analytics, and efficient simulation capabilities, while highlighting their role in enhancing performance and reliability.
arXiv Detail & Related papers (2023-05-09T06:39:57Z) - Literature Review: Computer Vision Applications in Transportation
Logistics and Warehousing [58.720142291102135]
Computer vision applications in transportation logistics and warehousing have a huge potential for process automation.
We present a structured literature review on research in the field to help leverage this potential.
arXiv Detail & Related papers (2023-04-12T17:33:41Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
This research introduces an implementation of a tensor-field-based generative urban modeling toolkit.
Our method encodes contextual constraints such as waterfront edges, terrain, view-axis, existing streets, landmarks, and non-geometric design inputs.
This allows users to generate many, diverse urban fabric configurations that resemble real-world cities with very few model inputs.
arXiv Detail & Related papers (2022-12-13T17:58:02Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z) - City limits in the age of smartphones and urban scaling [0.0]
Urban planning still lacks appropriate standards to define city boundaries across urban systems.
ICT provide the potential to portray more accurate descriptions of the urban systems.
We apply computational techniques over a large volume of mobile phone records to define urban boundaries.
arXiv Detail & Related papers (2020-05-06T17:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.