Structured mutation inspired by evolutionary theory enriches population
performance and diversity
- URL: http://arxiv.org/abs/2302.00559v2
- Date: Wed, 12 Jul 2023 15:13:33 GMT
- Title: Structured mutation inspired by evolutionary theory enriches population
performance and diversity
- Authors: Stefano Tiso, Pedro Carvalho, Nuno Louren\c{c}o, Penousal Machado
- Abstract summary: Grammar-Guided Genetic Programming employs a variety of insights from evolutionary theory to autonomously design solutions for a given task.
Recent insights from evolutionary biology can lead to further improvements in GGGP algorithms.
We term this new method of variation Facilitated Mutation (FM)
- Score: 2.3577368017815705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grammar-Guided Genetic Programming (GGGP) employs a variety of insights from
evolutionary theory to autonomously design solutions for a given task. Recent
insights from evolutionary biology can lead to further improvements in GGGP
algorithms. In this paper, we apply principles from the theory of Facilitated
Variation and knowledge about heterogeneous mutation rates and mutation effects
to improve the variation operators. We term this new method of variation
Facilitated Mutation (FM). We test FM performance on the evolution of neural
network optimizers for image classification, a relevant task in evolutionary
computation, with important implications for the field of machine learning. We
compare FM and FM combined with crossover (FMX) against a typical mutation
regime to assess the benefits of the approach. We find that FMX in particular
provides statistical improvements in key metrics, creating a superior optimizer
overall (+0.48\% average test accuracy), improving the average quality of
solutions (+50\% average population fitness), and discovering more diverse
high-quality behaviors (+400 high-quality solutions discovered per run on
average). Additionally, FM and FMX can reduce the number of fitness evaluations
in an evolutionary run, reducing computational costs in some scenarios.
Related papers
- Effective Adaptive Mutation Rates for Program Synthesis [3.2228025627337864]
Problem-solving performance of evolutionary algorithms depends on mutation rates.
We propose an adaptive bandit-based mutation scheme that removes the need to specify a mutation rate.
Results on software synthesis and symbolic regression problems validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-06-23T00:56:37Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
We develop a novel codebook pre-training task, namely masked microenvironment modeling.
We demonstrate superior performance and training efficiency over state-of-the-art pre-training-based methods in mutation effect prediction.
arXiv Detail & Related papers (2024-05-16T03:53:21Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Accurate and Definite Mutational Effect Prediction with Lightweight
Equivariant Graph Neural Networks [2.381587712372268]
This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins.
Our solution offers a wide range of benefits that make it an ideal choice for the community.
arXiv Detail & Related papers (2023-04-13T09:51:49Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
We discover entirely new genetic algorithms in a data-driven fashion.
We parametrize selection and mutation rate adaptation as cross- and self-attention modules.
The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets.
arXiv Detail & Related papers (2023-04-08T12:14:15Z) - Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms [10.609857097723266]
We study how self-adaptation influences multi-objective evolutionary algorithms.
We show that adapting the mutation rate based on single-objective optimization and hypervolume can speed up the convergence of GSEMO.
We propose a GSEMO with self-adaptive mutation, which considers optimizing for single objectives and adjusts the mutation rate for each solution individually.
arXiv Detail & Related papers (2023-03-08T14:26:46Z) - Effective Mutation Rate Adaptation through Group Elite Selection [50.88204196504888]
This paper introduces the Group Elite Selection of Mutation Rates (GESMR) algorithm.
GESMR co-evolves a population of solutions and a population of MRs, such that each MR is assigned to a group of solutions.
With the same number of function evaluations and with almost no overhead, GESMR converges faster and to better solutions than previous approaches.
arXiv Detail & Related papers (2022-04-11T01:08:26Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - Meta-Learning with Adaptive Hyperparameters [55.182841228303225]
We focus on a complementary factor in MAML framework, inner-loop optimization (or fast adaptation)
We propose a new weight update rule that greatly enhances the fast adaptation process.
arXiv Detail & Related papers (2020-10-31T08:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.