Oracle-Preserving Latent Flows
- URL: http://arxiv.org/abs/2302.00806v1
- Date: Thu, 2 Feb 2023 00:13:32 GMT
- Title: Oracle-Preserving Latent Flows
- Authors: Alexander Roman, Roy T. Forestano, Konstantin T. Matchev, Katia
Matcheva, Eyup B. Unlu
- Abstract summary: We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
- Score: 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a deep learning methodology for the simultaneous discovery of
multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with
fully connected neural networks trained with a specially constructed loss
function ensuring the desired symmetry properties. The two new elements in this
work are the use of a reduced-dimensionality latent space and the
generalization to transformations invariant with respect to high-dimensional
oracles. The method is demonstrated with several examples on the MNIST digit
dataset.
Related papers
- Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
This letter introduces two improved algorithms that significantly speed up the discovery of symmetry transformations.
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
arXiv Detail & Related papers (2023-07-10T20:25:44Z) - Learning Lie Group Symmetry Transformations with Neural Networks [17.49001206996365]
This work focuses on discovering and characterizing unknown symmetries present in the dataset, namely, Lie group symmetry transformations.
Our goal is to characterize the transformation group and the distribution of the parameter values.
Results showcase the effectiveness of the approach in both these settings.
arXiv Detail & Related papers (2023-07-04T09:23:24Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.