Inverse Learning of Symmetries
- URL: http://arxiv.org/abs/2002.02782v2
- Date: Thu, 22 Oct 2020 14:46:53 GMT
- Title: Inverse Learning of Symmetries
- Authors: Mario Wieser, Sonali Parbhoo, Aleksander Wieczorek, Volker Roth
- Abstract summary: We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
- Score: 71.62109774068064
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Symmetry transformations induce invariances which are frequently described
with deep latent variable models. In many complex domains, such as the chemical
space, invariances can be observed, yet the corresponding symmetry
transformation cannot be formulated analytically. We propose to learn the
symmetry transformation with a model consisting of two latent subspaces, where
the first subspace captures the target and the second subspace the remaining
invariant information. Our approach is based on the deep information bottleneck
in combination with a continuous mutual information regulariser. Unlike
previous methods, we focus on the challenging task of minimising mutual
information in continuous domains. To this end, we base the calculation of
mutual information on correlation matrices in combination with a bijective
variable transformation. Extensive experiments demonstrate that our model
outperforms state-of-the-art methods on artificial and molecular datasets.
Related papers
- Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
We propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components.
Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model.
arXiv Detail & Related papers (2024-10-07T23:53:25Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Tensor Component Analysis for Interpreting the Latent Space of GANs [41.020230946351816]
This paper addresses the problem of finding interpretable directions in the latent space of pre-trained Generative Adversarial Networks (GANs)
Our scheme allows for both linear edits corresponding to the individual modes of the tensor, and non-linear ones that model the multiplicative interactions between them.
We show experimentally that we can utilise the former to better separate style- from geometry-based transformations, and the latter to generate an extended set of possible transformations.
arXiv Detail & Related papers (2021-11-23T09:14:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.