Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation
- URL: http://arxiv.org/abs/2301.11145v2
- Date: Tue, 19 Dec 2023 17:09:04 GMT
- Title: Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation
- Authors: Elena Camuffo, Umberto Michieli, Simone Milani
- Abstract summary: LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding.
We present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model.
Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture.
- Score: 15.353256018248103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in autonomous robotic technologies have highlighted the
growing need for precise environmental analysis. LiDAR semantic segmentation
has gained attention to accomplish fine-grained scene understanding by acting
directly on raw content provided by sensors. Recent solutions showed how
different learning techniques can be used to improve the performance of the
model, without any architectural or dataset change. Following this trend, we
present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK)
derived from a standard model. First, classes are clustered into macro groups
according to mutual prediction errors; then, the learning process is
regularized by: (1) aligning class-conditional prototypical feature
representation for both fine and coarse classes, (2) weighting instances with a
per-class fairness index. Our LEAK approach is very general and can be
seamlessly applied on top of any segmentation architecture; indeed,
experimental results showed that it enables state-of-the-art performances on
different architectures, datasets and tasks, while ensuring more balanced
class-wise results and faster convergence.
Related papers
- SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized
Zero-Shot Learning [0.7420433640907689]
Generalized Zero-Shot Learning (GZSL) recognizes unseen classes by transferring knowledge from the seen classes.
This paper introduces a dual strategy to address the generalization gap.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples.
We propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML)
We show that the proposed approach can improve the SOTA performance by 1-5% in terms of accuracy.
arXiv Detail & Related papers (2023-07-28T12:30:41Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.