Robust multi-item auction design using statistical learning: Overcoming
uncertainty in bidders' types distributions
- URL: http://arxiv.org/abs/2302.00941v1
- Date: Thu, 2 Feb 2023 08:32:55 GMT
- Title: Robust multi-item auction design using statistical learning: Overcoming
uncertainty in bidders' types distributions
- Authors: Jiale Han and Xiaowu Dai
- Abstract summary: Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids.
To further enhance efficiency of our mechanism, we introduce two novel strategies for query reduction.
Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue design and query reduction.
- Score: 6.5920927560926295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel mechanism design for multi-item auction settings
with uncertain bidders' type distributions. Our proposed approach utilizes
nonparametric density estimation to accurately estimate bidders' types from
historical bids, and is built upon the Vickrey-Clarke-Groves (VCG) mechanism,
ensuring satisfaction of Bayesian incentive compatibility (BIC) and
$\delta$-individual rationality (IR). To further enhance the efficiency of our
mechanism, we introduce two novel strategies for query reduction: a filtering
method that screens potential winners' value regions within the confidence
intervals generated by our estimated distribution, and a classification
strategy that designates the lower bound of an interval as the estimated type
when the length is below a threshold value. Simulation experiments conducted on
both small-scale and large-scale data demonstrate that our mechanism
consistently outperforms existing methods in terms of revenue maximization and
query reduction, particularly in large-scale scenarios. This makes our proposed
mechanism a highly desirable and effective option for sellers in the realm of
multi-item auctions.
Related papers
- Minimax and Communication-Efficient Distributed Best Subset Selection with Oracle Property [0.358439716487063]
The explosion of large-scale data has outstripped the processing capabilities of single-machine systems.
Traditional approaches to distributed inference often struggle with achieving true sparsity in high-dimensional datasets.
We propose a novel, two-stage, distributed best subset selection algorithm to address these issues.
arXiv Detail & Related papers (2024-08-30T13:22:08Z) - Data Trading Combination Auction Mechanism based on the Exponential Mechanism [0.27309692684728615]
We design a textitData Trading Combination Auction Mechanism based on the exponential mechanism (DCAE) to protect buyers' bidding privacy from being leaked.
We consider the selection of different mechanisms under two scenarios, and the experimental results show that this method can ensure high auction revenue and protect buyers' privacy from being violated.
arXiv Detail & Related papers (2024-05-12T17:11:50Z) - Conformal Online Auction Design [6.265829744417118]
COAD incorporates both the bidder and item features to provide an incentive-compatible mechanism for online auctions.
It employs a distribution-free, prediction interval-based approach using conformal prediction techniques.
COAD admits the use of a broad array of modern machine-learning methods, including random forests, kernel methods, and deep neural nets.
arXiv Detail & Related papers (2024-05-11T15:28:25Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
We consider the problem of a revenue-maximizing seller with a large number of items for sale to $n$ strategic bidders.
It is well-known that optimal and even approximately-optimal mechanisms for this setting are notoriously difficult to characterize or compute.
arXiv Detail & Related papers (2023-10-11T20:34:17Z) - No Bidding, No Regret: Pairwise-Feedback Mechanisms for Digital Goods
and Data Auctions [14.87136964827431]
This study presents a novel mechanism design addressing a general repeated-auction setting.
The mechanism's novelty lies in using pairwise comparisons for eliciting information from the bidder.
Our focus on human factors contributes to the development of more human-aware and efficient mechanism design.
arXiv Detail & Related papers (2023-06-02T18:29:07Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
An auction mechanism that maximizes the auctioneer's revenue while minimizes bidders' ex-post regret is an important yet intricate problem in economics.
Remarkable progress has been achieved through learning the optimal auction mechanism by neural networks.
arXiv Detail & Related papers (2022-10-11T16:13:25Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
Empirical Revenue Maximization (ERM) is one of the most important price learning algorithms in auction design.
We generalize the definition of an incentive-awareness measure proposed by Lavi et al to quantify the reduction of ERM's outputted price due to a change of $mge 1$ out of $N$ input samples.
We construct an efficient, approximately incentive-compatible, and revenue-optimal learning algorithm using ERM in repeated auctions against non-myopic bidders, and show approximate group incentive-compatibility in uniform-price auctions.
arXiv Detail & Related papers (2020-10-12T08:20:35Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
We study a multi-round welfare-maximising mechanism design problem in instances where agents do not know their values.
We first define three notions of regret for the welfare, the individual utilities of each agent and that of the mechanism.
Our framework also provides flexibility to control the pricing scheme so as to trade-off between the agent and seller regrets.
arXiv Detail & Related papers (2020-04-19T18:00:58Z) - Generalization Guarantees for Multi-item Profit Maximization: Pricing,
Auctions, and Randomized Mechanisms [86.81403511861788]
We study multi-item profit when there is an underlying distribution over buyers' values.
For any set of buyers' values, profit is piecewise linear in the mechanism's parameters.
We prove new bounds for mechanism classes not yet in the sample-based mechanism design literature.
arXiv Detail & Related papers (2017-04-29T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.