A Light-weight CNN Model for Efficient Parkinson's Disease Diagnostics
- URL: http://arxiv.org/abs/2302.00973v1
- Date: Thu, 2 Feb 2023 09:49:07 GMT
- Title: A Light-weight CNN Model for Efficient Parkinson's Disease Diagnostics
- Authors: Xuechao Wang, Junqing Huang, Marianna Chatzakou, Kadri Medijainen,
Pille Taba, Aaro Toomela, Sven Nomm and Michael Ruzhansky
- Abstract summary: The proposed model consists of a convolution neural network (CNN) to short-term memory (LSTM) to adapt the characteristics of collected time-series signals.
Experimental results show that the proposed model achieves a high-quality diagnostic result over multiple evaluation metrics with much fewer parameters and operations.
- Score: 1.382077805849933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning methods have achieved great success in various
fields due to their strong performance in practical applications. In this
paper, we present a light-weight neural network for Parkinson's disease
diagnostics, in which a series of hand-drawn data are collected to distinguish
Parkinson's disease patients from healthy control subjects. The proposed model
consists of a convolution neural network (CNN) cascading to long-short-term
memory (LSTM) to adapt the characteristics of collected time-series signals. To
make full use of their advantages, a multilayered LSTM model is firstly used to
enrich features which are then concatenated with raw data and fed into a
shallow one-dimensional (1D) CNN model for efficient classification.
Experimental results show that the proposed model achieves a high-quality
diagnostic result over multiple evaluation metrics with much fewer parameters
and operations, outperforming conventional methods such as support vector
machine (SVM), random forest (RF), lightgbm (LGB) and CNN-based methods.
Related papers
- LSTM-CNN: An efficient diagnostic network for Parkinson's disease
utilizing dynamic handwriting analysis [2.1063903985563988]
We design a compact and efficient network architecture to analyse the distinctive handwriting patterns of patients' dynamic handwriting signals.
The proposed network is based on a hybrid deep learning approach that fully leverages the advantages of both long short-term memory (LSTM) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2023-11-20T13:34:08Z) - 1D-Convolutional transformer for Parkinson disease diagnosis from gait [7.213855322671065]
This paper presents an efficient deep neural network model for diagnosing Parkinson's disease from gait.
We introduce a hybrid ConvNetTransform-er architecture to accurately diagnose the disease by detecting the severity stage.
Our experimental results show that our approach is effective for detecting the different stages of Parkinson's disease from gait data.
arXiv Detail & Related papers (2023-11-06T15:17:17Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
Clinical outcome prediction plays an important role in stroke patient management.
From a machine learning point-of-view, one of the main challenges is dealing with heterogeneous data.
In this paper a multimodal convolutional neural network - long short-term memory (CNN-LSTM) based ensemble model is proposed.
arXiv Detail & Related papers (2022-05-11T14:46:01Z) - Novel EEG based Schizophrenia Detection with IoMT Framework for Smart
Healthcare [0.0]
Schizophrenia(Sz) is a brain disorder that severely affects the thinking, behaviour, and feelings of people all around the world.
EEG is a non-linear time-seriesi signal and utilizing it for investigation is rather crucial due to its non-linear structure.
This paper aims to improve the performance of EEG based Sz detection using a deep learning approach.
arXiv Detail & Related papers (2021-11-19T18:21:20Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.