Absence of Correlations in Dissipative Interacting Qubits: a No-Go
Theorem
- URL: http://arxiv.org/abs/2302.00976v1
- Date: Thu, 2 Feb 2023 09:53:01 GMT
- Title: Absence of Correlations in Dissipative Interacting Qubits: a No-Go
Theorem
- Authors: Zeqing Wang, Ran Qi, Yao Lu, Zhigang Wu, and Jianwen Jie
- Abstract summary: We study a system of dissipative qubits with the Heisenberg interaction.
We obtain, for qubits under a certain condition, an exact steady state solution to the Lindblad master equation.
- Score: 3.214635763343888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exact solutions of model problems are elusive but potent tools for
understanding many body interacting systems. We study a system of dissipative
qubits with the Heisenberg interaction and obtain, for qubits under a certain
condition, an exact steady state solution to the Lindblad master equation
describing its dynamics. The physical content of such a solution is a
remarkable no-go theorem, which states that for qubits possessing identical
ratios of the damping and gain rates, no correlation can be established between
them in the steady state. Two consequences of this theorem are discussed in the
context of quantum synchronization of qubits. The first is a complete blockade
of quantum synchronization of qubits under the aforementioned condition, an
effect reminiscent of, but having a much broader scope than, that found in
dissipated Kerr-anharmonic oscillators. The second, and a more important
consequence is the possibility of reducing a complex all-to-all qubit network
to a much simpler one-to-all network by engineering the dissipation. Such a
reduction is desired because it provides an effective tool to optimize the
quantum synchronization of a complex qubit network. Finally, we propose two
concrete experimental schemes to implement our model and to test our
predictions.
Related papers
- Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Unifying non-Markovian characterisation with an efficient and
self-consistent framework [0.0]
Nearly all quantum devices are plagued by noisy quantum and classical correlations at the level of the circuit.
We establish a theoretical framework that uniformly incorporates and classifies all non-Markovian phenomena.
We formulate an efficient reconstruction using network learning, allowing also for easy modularisation and simplification.
arXiv Detail & Related papers (2023-12-13T19:00:23Z) - Quantum synchronization and entanglement of dissipative qubits coupled
to a resonator [0.0]
We study the properties of a driven cavity coupled to several qubits in the framework of a dissipative Jaynes-Cummings model.
We show that the rotating wave approximation (RWA) allows to reduce the description of original driven model to an effective Jaynes-Cummings model with strong coupling between photons and qubits.
arXiv Detail & Related papers (2023-08-07T14:22:24Z) - Exploring Quantum Synchronization with a Composite Two-Qubit Oscillator [0.0]
We study a minimal model for a composite oscillator consisting of two interacting qubits coupled to separate baths.
We study the phase response of the constituent qubits as well as the system as a whole, when one of the qubits is weakly driven.
We propose and analyze a circuit quantum electrodynamics implementation of this model, which exploits recent advances in dissipation engineering.
arXiv Detail & Related papers (2023-06-07T07:20:57Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Experimental implementation of precisely tailored light-matter
interaction via inverse engineering [5.131683740032632]
shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes.
Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system.
We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening.
arXiv Detail & Related papers (2021-01-29T08:17:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.