Quantum synchronization and entanglement of dissipative qubits coupled
to a resonator
- URL: http://arxiv.org/abs/2308.03617v1
- Date: Mon, 7 Aug 2023 14:22:24 GMT
- Title: Quantum synchronization and entanglement of dissipative qubits coupled
to a resonator
- Authors: A.D.Chepelianskii and D.L.Shepelyansky
- Abstract summary: We study the properties of a driven cavity coupled to several qubits in the framework of a dissipative Jaynes-Cummings model.
We show that the rotating wave approximation (RWA) allows to reduce the description of original driven model to an effective Jaynes-Cummings model with strong coupling between photons and qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the properties of a driven cavity coupled to several qubits in the
framework of a dissipative Jaynes-Cummings model. We show that the rotating
wave approximation (RWA) allows to reduce the description of original driven
model to an effective Jaynes-Cummings model with strong coupling between
photons and qubits. Two semi-analytical approaches are developed to describe
the steady state of this system. We first treat the weak dissipation limit
where we derive perturbative series of rate equations that converge to the
exact RWA steady-state except near the cavity resonance. This approach exactly
describes the multi-photon resonances in the system. Then in the strong
dissipation limit we introduce a semiclassical approximation which allows to
reproduce the mean spin-projections and cavity state. This approach reproduces
the RWA exactly in the strong dissipation limit but provides good qualitative
trends even in more quantum regimes. We then focus on quantum synchronization
of qubits through their coupling to the cavity. We demonstrate the entangled
steady state of a pair of qubits synchronized through their interaction with a
driven cavity in presence of dissipation and decoherence. Finally we discuss
synchronization of a larger number of qubits.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Correlating two qubits via common cavity environment [0.0]
Generation of quantum entanglement between a pair of qubits is studied in a cavity-QED platform.
Relative strength of qubit-photon couplings is crucial for establishing inter-qubit entanglement.
arXiv Detail & Related papers (2024-06-13T18:53:05Z) - Absence of Correlations in Dissipative Interacting Qubits: a No-Go
Theorem [3.214635763343888]
We study a system of dissipative qubits with the Heisenberg interaction.
We obtain, for qubits under a certain condition, an exact steady state solution to the Lindblad master equation.
arXiv Detail & Related papers (2023-02-02T09:53:01Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum memory effects in atomic ensembles coupled to photonic cavities [0.0]
We study the dynamics of many-body atomic systems symmetrically coupled to a single Lorentzian photonic cavity.
Our study reveals interesting dynamical characteristics including non-zero steady states, superradiant decay and enhanced energy transfer.
arXiv Detail & Related papers (2022-11-15T23:07:07Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Spectral Engineering of Cavity-Protected Polaritons in an Atomic
Ensemble with Controlled Disorder [0.0]
We observe the transition from a disordered regime to a polaritonic one with only two resonances.
We realize a dynamically modulated Tavis-Cumming model to produce a comb of narrow polariton resonances protected from the disorder.
arXiv Detail & Related papers (2022-08-25T13:40:32Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.