Stochastic optimal transport in Banach Spaces for regularized estimation
of multivariate quantiles
- URL: http://arxiv.org/abs/2302.00982v2
- Date: Mon, 19 Feb 2024 13:41:45 GMT
- Title: Stochastic optimal transport in Banach Spaces for regularized estimation
of multivariate quantiles
- Authors: Bernard Bercu, J\'er\'emie Bigot and Gauthier Thurin
- Abstract summary: We introduce a new algorithm for solving entropic optimal transport (EOT) between two absolutely continuous probability measures $mu$ and $nu$.
We study the almost sure convergence of our algorithm that takes its values in an infinite-dimensional Banach space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new stochastic algorithm for solving entropic optimal
transport (EOT) between two absolutely continuous probability measures $\mu$
and $\nu$. Our work is motivated by the specific setting of Monge-Kantorovich
quantiles where the source measure $\mu$ is either the uniform distribution on
the unit hypercube or the spherical uniform distribution. Using the knowledge
of the source measure, we propose to parametrize a Kantorovich dual potential
by its Fourier coefficients. In this way, each iteration of our stochastic
algorithm reduces to two Fourier transforms that enables us to make use of the
Fast Fourier Transform (FFT) in order to implement a fast numerical method to
solve EOT. We study the almost sure convergence of our stochastic algorithm
that takes its values in an infinite-dimensional Banach space. Then, using
numerical experiments, we illustrate the performances of our approach on the
computation of regularized Monge-Kantorovich quantiles. In particular, we
investigate the potential benefits of entropic regularization for the smooth
estimation of multivariate quantiles using data sampled from the target measure
$\nu$.
Related papers
- Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
We prove an $mathcalO(t-1)$ lower bound rate for the OT map, using the similarity between Laguerre cells estimation and density support estimation.
To nearly achieve the desired fast rate, we design an entropic regularization scheme decreasing with the number of samples.
arXiv Detail & Related papers (2024-05-23T11:46:03Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Stochastic Quantum Sampling for Non-Logconcave Distributions and
Estimating Partition Functions [13.16814860487575]
We present quantum algorithms for sampling from nonlogconcave probability distributions.
$f$ can be written as a finite sum $f(x):= frac1Nsum_k=1N f_k(x)$.
arXiv Detail & Related papers (2023-10-17T17:55:32Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - Quantum-enhanced analysis of discrete stochastic processes [0.8057006406834467]
We propose a quantum algorithm for calculating the characteristic function of a Discrete processes (DSP)
It completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps.
The algorithm takes all trajectories into account and hence eliminates the need of importance sampling.
arXiv Detail & Related papers (2020-08-14T16:07:35Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.