Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
- URL: http://arxiv.org/abs/2302.01385v2
- Date: Thu, 21 Mar 2024 04:16:58 GMT
- Title: Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access
- Authors: Akshaj Kumar Veldanda, Ivan Brugere, Sanghamitra Dutta, Alan Mishler, Siddharth Garg,
- Abstract summary: We propose a framework to train fair classifiers without access to sensitive attributes on either training or validation data.
We show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints.
- Score: 12.447577504758485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair machine learning methods seek to train models that balance model performance across demographic subgroups defined over sensitive attributes like race and gender. Although sensitive attributes are typically assumed to be known during training, they may not be available in practice due to privacy and other logistical concerns. Recent work has sought to train fair models without sensitive attributes on training data. However, these methods need extensive hyper-parameter tuning to achieve good results, and hence assume that sensitive attributes are known on validation data. However, this assumption too might not be practical. Here, we propose Antigone, a framework to train fair classifiers without access to sensitive attributes on either training or validation data. Instead, we generate pseudo sensitive attributes on the validation data by training a biased classifier and using the classifier's incorrectly (correctly) labeled examples as proxies for minority (majority) groups. Since fairness metrics like demographic parity, equal opportunity and subgroup accuracy can be estimated to within a proportionality constant even with noisy sensitive attribute information, we show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints. Key to our results is a principled approach to select the hyper-parameters of the biased classifier in a completely unsupervised fashion (meaning without access to ground truth sensitive attributes) that minimizes the gap between fairness estimated using noisy versus ground-truth sensitive labels.
Related papers
- Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
arXiv Detail & Related papers (2024-03-11T10:50:53Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Practical Bias Mitigation through Proxy Sensitive Attribute Label
Generation [0.0]
We propose a two-stage approach of unsupervised embedding generation followed by clustering to obtain proxy-sensitive labels.
The efficacy of our work relies on the assumption that bias propagates through non-sensitive attributes that are correlated to the sensitive attributes.
Experimental results demonstrate that bias mitigation using existing algorithms such as Fair Mixup and Adversarial Debiasing yields comparable results on derived proxy labels.
arXiv Detail & Related papers (2023-12-26T10:54:15Z) - Fairness Under Demographic Scarce Regime [7.523105080786704]
We propose a framework to build attribute classifiers that achieve better fairness-accuracy tradeoffs.
We show that enforcing fairness constraints on samples with uncertain sensitive attributes can negatively impact the fairness-accuracy tradeoff.
Our framework can outperform models trained with fairness constraints on the true sensitive attributes in most benchmarks.
arXiv Detail & Related papers (2023-07-24T19:07:34Z) - Towards Assumption-free Bias Mitigation [47.5131072745805]
We propose an assumption-free framework to detect the related attributes automatically by modeling feature interaction for bias mitigation.
Experimental results on four real-world datasets demonstrate that our proposed framework can significantly alleviate unfair prediction behaviors.
arXiv Detail & Related papers (2023-07-09T05:55:25Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
We propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder.
We use a bias-aware model to capture inherent bias information on sensitive attribute.
We also use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them.
arXiv Detail & Related papers (2022-04-01T15:57:47Z) - Tune it the Right Way: Unsupervised Validation of Domain Adaptation via
Soft Neighborhood Density [125.64297244986552]
We propose an unsupervised validation criterion that measures the density of soft neighborhoods by computing the entropy of the similarity distribution between points.
Our criterion is simpler than competing validation methods, yet more effective.
arXiv Detail & Related papers (2021-08-24T17:41:45Z) - Fairness via Representation Neutralization [60.90373932844308]
We propose a new mitigation technique, namely, Representation Neutralization for Fairness (RNF)
RNF achieves that fairness by debiasing only the task-specific classification head of DNN models.
Experimental results over several benchmark datasets demonstrate our RNF framework to effectively reduce discrimination of DNN models.
arXiv Detail & Related papers (2021-06-23T22:26:29Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
We propose a novel algorithm that can effectively identify and treat latent discriminating features.
The approach helps to collect discrimination-free features that would improve the model performance.
arXiv Detail & Related papers (2020-02-26T10:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.