Distributionally Generative Augmentation for Fair Facial Attribute Classification
- URL: http://arxiv.org/abs/2403.06606v2
- Date: Mon, 25 Mar 2024 06:57:57 GMT
- Title: Distributionally Generative Augmentation for Fair Facial Attribute Classification
- Authors: Fengda Zhang, Qianpei He, Kun Kuang, Jiashuo Liu, Long Chen, Chao Wu, Jun Xiao, Hanwang Zhang,
- Abstract summary: Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
- Score: 69.97710556164698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial Attribute Classification (FAC) holds substantial promise in widespread applications. However, FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations. This unfairness is largely attributed to bias in data, where some spurious attributes (e.g., Male) statistically correlate with the target attribute (e.g., Smiling). Most of existing fairness-aware methods rely on the labels of spurious attributes, which may be unavailable in practice. This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation. Initially, we identify the potential spurious attributes based on generative models. Notably, it enhances interpretability by explicitly showing the spurious attributes in image space. Following this, for each image, we first edit the spurious attributes with a random degree sampled from a uniform distribution, while keeping target attribute unchanged. Then we train a fair FAC model by fostering model invariance to these augmentation. Extensive experiments on three common datasets demonstrate the effectiveness of our method in promoting fairness in FAC without compromising accuracy. Codes are in https://github.com/heqianpei/DiGA.
Related papers
- AITTI: Learning Adaptive Inclusive Token for Text-to-Image Generation [53.65701943405546]
We learn adaptive inclusive tokens to shift the attribute distribution of the final generative outputs.
Our method requires neither explicit attribute specification nor prior knowledge of the bias distribution.
Our method achieves comparable performance to models that require specific attributes or editing directions for generation.
arXiv Detail & Related papers (2024-06-18T17:22:23Z) - Balancing Act: Distribution-Guided Debiasing in Diffusion Models [31.38505986239798]
Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability.
DMs reflect the biases present in the training datasets.
We present a method for debiasing DMs without relying on additional data or model retraining.
arXiv Detail & Related papers (2024-02-28T09:53:17Z) - Fair Sampling in Diffusion Models through Switching Mechanism [5.560136885815622]
We propose a fairness-aware sampling method called textitattribute switching mechanism for diffusion models.
We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects.
arXiv Detail & Related papers (2024-01-06T06:55:26Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - Fairness Under Demographic Scarce Regime [7.523105080786704]
We propose a framework to build attribute classifiers that achieve better fairness-accuracy tradeoffs.
We show that enforcing fairness constraints on samples with uncertain sensitive attributes can negatively impact the fairness-accuracy tradeoff.
Our framework can outperform models trained with fairness constraints on the true sensitive attributes in most benchmarks.
arXiv Detail & Related papers (2023-07-24T19:07:34Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
We present a novel approach to mitigate bias in facial expression recognition (FER) models.
Our method aims to reduce sensitive attribute information such as gender, age, or race, in the embeddings produced by FER models.
For the first time, we analyze the notion of attractiveness as an important sensitive attribute in FER models and demonstrate that FER models can indeed exhibit biases towards more attractive faces.
arXiv Detail & Related papers (2023-06-11T14:59:20Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
Diffusion models are increasingly popular in synthetic data generation and image editing applications.
We investigate the presence of bias in diffusion-based face generation models with respect to attributes such as gender, race, and age.
We examine how dataset size affects the attribute composition and perceptual quality of both diffusion and Generative Adversarial Network (GAN) based face generation models.
arXiv Detail & Related papers (2023-05-10T18:22:31Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - xFAIR: Better Fairness via Model-based Rebalancing of Protected
Attributes [15.525314212209564]
Machine learning software can generate models that inappropriately discriminate against specific protected social groups.
We propose xFAIR, a model-based extrapolation method, that is capable of both mitigating bias and explaining the cause.
arXiv Detail & Related papers (2021-10-03T22:10:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.