論文の概要: Object Dimension Extraction for Environment Mapping with Low Cost
Cameras Fused with Laser Ranging
- arxiv url: http://arxiv.org/abs/2302.01387v1
- Date: Wed, 1 Feb 2023 04:35:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-06 18:26:15.559725
- Title: Object Dimension Extraction for Environment Mapping with Low Cost
Cameras Fused with Laser Ranging
- Title(参考訳): レーザレンジングによる低コストカメラを用いた環境マッピングのための物体次元抽出
- Authors: E.M.S.P. Ekanayake, T.H.M.N.C. Thelasingha, U.V.B.L. Udugama, G.M.R.I.
Godaliyadda, M.P.B. Ekanayake, B.G.L.T. Samaranayake, J.V. Wijayakulasooriya
- Abstract要約: 我々はステレオカメラと融合したレーザ測位法を用いてマッピング対象の次元を抽出した。
歪みはカメラの数学的モデルを用いて校正された。
レーザレンジファインダ(LRF)とノイズ低減視覚データを用いて対象パラメータを同定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It is essential to have a method to map an unknown terrain for various
applications. For places where human access is not possible, a method should be
proposed to identify the environment. Exploration, disaster relief,
transportation and many other purposes would be convenient if a map of the
environment is available. Replicating the human vision system using stereo
cameras would be an optimum solution. In this work, we have used laser ranging
based technique fused with stereo cameras to extract dimension of objects for
mapping. The distortions were calibrated using mathematical model of the
camera. By means of Semi Global Block Matching [1] disparity map was generated
and reduces the noise using novel noise reduction method of disparity map by
dilation. The Data from the Laser Range Finder (LRF) and noise reduced vision
data has been used to identify the object parameters.
- Abstract(参考訳): 未知の地形を様々な用途にマッピングする方法を持つことが不可欠である。
人的アクセスが不可能な場所では、環境を特定する方法が提案されるべきである。
探検、災害救助、輸送、その他多くの用途は、環境の地図が利用可能であれば便利である。
ステレオカメラで人間の視覚システムを再現することは最適な解決法である。
本研究では,ステレオカメラと融合したレーザー測位技術を用いて,物体の寸法をマッピングに抽出する。
歪みはカメラの数学的モデルを用いて校正された。
半大域ブロックマッチング [1] パリティマップが生成され、拡張によるパリティマップの新しいノイズ低減法を用いてノイズを低減した。
レーザーレンジファインダ(lrf)とノイズ低減視覚データからのデータは、物体パラメータの同定に使用されている。
関連論文リスト
- View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Artifacts Mapping: Multi-Modal Semantic Mapping for Object Detection and
3D Localization [13.473742114288616]
既知の環境下でオブジェクトを自律的に検出・ローカライズするフレームワークを提案する。
フレームワークは,RGBデータによる環境理解,マルチモーダルセンサ融合による深度推定,アーティファクト管理という,3つの重要な要素で構成されている。
実験の結果,提案フレームワークは実サンプル環境におけるオブジェクトの98%を後処理なしで正確に検出できることがわかった。
論文 参考訳(メタデータ) (2023-07-03T15:51:39Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization
Using Satellite Image [91.29546868637911]
本稿では,地上画像と架空衛星地図とをマッチングすることにより,車載カメラのローカライゼーションの問題に対処する。
鍵となる考え方は、タスクをポーズ推定として定式化し、ニューラルネットベースの最適化によってそれを解くことである。
標準自動運転車のローカライゼーションデータセットの実験により,提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2022-04-10T19:16:58Z) - Convolutional Deep Denoising Autoencoders for Radio Astronomical Images [0.0]
我々は、最先端の電波望遠鏡の合成画像に、畳み込み復号化オートエンコーダ(Convolutional Denoising Autoencoder)と呼ばれる機械学習技術を適用した。
我々のオートエンコーダは、器用感度の限界でかすかな物体を識別し、抽出する複雑な画像を効果的に識別することができる。
論文 参考訳(メタデータ) (2021-10-16T17:08:30Z) - High-Resolution Depth Maps Based on TOF-Stereo Fusion [27.10059147107254]
そこで本研究では,効率的な種子育成アルゴリズムに基づくTOF-ステレオ融合法を提案する。
提案アルゴリズムは2次元画像に基づくステレオアルゴリズムよりも優れていることを示す。
このアルゴリズムは、単一のCPU上でリアルタイムのパフォーマンスを示す可能性がある。
論文 参考訳(メタデータ) (2021-07-30T15:11:42Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
LUCESは, 様々な素材の14個のオブジェクトからなる, 近距離Ld点光のための最初の実世界のデータセットである。
52個のLEDを計る装置は、カメラから10から30cm離れた位置にある各物体に点灯するように設計されている。
提案するデータセットにおける最新の近接場測光ステレオアルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-04-27T12:30:42Z) - Scale Normalized Image Pyramids with AutoFocus for Object Detection [75.71320993452372]
スケール正規化画像ピラミッド(SNIP)が生成され、人間の視覚と同様に、異なるスケールで固定されたサイズ範囲内のオブジェクトにのみ参加する。
本研究では,オブジェクトを含む可能性のある固定サイズのサブリージョンのみで動作する,効率的な空間サブサンプリング手法を提案する。
結果のアルゴリズムはAutoFocusと呼ばれ、SNIPを使用する場合の推論では2.5~5倍のスピードアップとなる。
論文 参考訳(メタデータ) (2021-02-10T18:57:53Z) - A Flow Base Bi-path Network for Cross-scene Video Crowd Understanding in
Aerial View [93.23947591795897]
本稿では,これらの課題に対処し,ドローンから収集した視覚的データから参加者を自動的に理解する。
クロスシーンテストで発生する背景雑音を軽減するために, 二重ストリーム群カウントモデルを提案する。
極暗環境下での集団密度推定問題に対処するために,ゲームグランドセフトオートV(GTAV)によって生成された合成データを導入する。
論文 参考訳(メタデータ) (2020-09-29T01:48:24Z) - Graph-based Proprioceptive Localization Using a Discrete Heading-Length
Feature Sequence Matching Approach [14.356113113268389]
Proprioceptive Localizationは、新しいタイプのロボットエゴセントリックなローカライゼーション手法を指す。
これらの方法は自然に悪天候、照明条件、その他の極端な環境条件に免疫がある。
環境条件の厳しい環境条件下で、ローカライゼーションのための低コストなフォールバックソリューションを提供する。
論文 参考訳(メタデータ) (2020-05-27T23:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。