論文の概要: ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics
- arxiv url: http://arxiv.org/abs/2302.01501v2
- Date: Sun, 4 Jun 2023 16:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 03:05:07.173631
- Title: ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics
- Title(参考訳): ANTM: 進化するトピックを探索するニューラルネットワークトピックモデル
- Authors: Hamed Rahimi, Hubert Naacke, Camelia Constantin, Bernd Amann
- Abstract要約: 本稿では、アラインドニューラルトピックモデル(ANTM)と呼ばれる動的トピックモデルのアルゴリズム系を提案する。
ANTMは、新しいデータマイニングアルゴリズムを組み合わせて、進化するトピックを発見するためのモジュラーフレームワークを提供する。
Pythonパッケージは、大規模テキストデータにおけるトピックのトレンドと進化パターンを研究したい研究者や科学者のために開発されている。
- 参考スコア(独自算出の注目度): 1.854328133293073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an algorithmic family of dynamic topic models called
Aligned Neural Topic Models (ANTM), which combine novel data mining algorithms
to provide a modular framework for discovering evolving topics. ANTM maintains
the temporal continuity of evolving topics by extracting time-aware features
from documents using advanced pre-trained Large Language Models (LLMs) and
employing an overlapping sliding window algorithm for sequential document
clustering. This overlapping sliding window algorithm identifies a different
number of topics within each time frame and aligns semantically similar
document clusters across time periods. This process captures emerging and
fading trends across different periods and allows for a more interpretable
representation of evolving topics. Experiments on four distinct datasets show
that ANTM outperforms probabilistic dynamic topic models in terms of topic
coherence and diversity metrics. Moreover, it improves the scalability and
flexibility of dynamic topic models by being accessible and adaptable to
different types of algorithms. Additionally, a Python package is developed for
researchers and scientists who wish to study the trends and evolving patterns
of topics in large-scale textual data.
- Abstract(参考訳): 本稿では、新しいデータマイニングアルゴリズムを組み合わせて、進化するトピックを発見するためのモジュラーフレームワークを提供する、Aligned Neural Topic Models (ANTM) と呼ばれる動的トピックモデルのアルゴリズムファミリを提案する。
ANTMは、高度に訓練された大規模言語モデル(LLM)を用いて文書から時間的特徴を抽出し、逐次文書クラスタリングに重なり合うスライディングウインドウアルゴリズムを用いて、進化するトピックの時間的連続性を維持する。
この重なり合うスライディングウインドウアルゴリズムは、時間枠ごとに異なるトピックを識別し、意味的に類似した文書クラスタを時間間隔で調整する。
このプロセスは、異なる期間にわたる出現傾向と衰退傾向を捉え、進化するトピックをより解釈可能な表現を可能にします。
4つの異なるデータセットの実験により、ANTMはトピックコヒーレンスと多様性の指標で確率論的動的トピックモデルより優れていることが示された。
さらに、動的トピックモデルのスケーラビリティと柔軟性を、さまざまなタイプのアルゴリズムにアクセスし、適応することで改善する。
さらに、pythonパッケージは、大規模なテキストデータでトピックのトレンドと進化パターンを研究したい研究者や科学者のために開発されている。
関連論文リスト
- Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms [6.349503549199403]
本研究は,トピック抽出プロセスのための革新的エンド・ツー・エンドのセマンティクス駆動トピックモデリング手法を提案する。
本モデルは,事前学習したトランスフォーマーベース言語モデルを用いて文書埋め込みを生成する。
ChatGPTや従来のトピックモデリングアルゴリズムと比較して、我々のモデルはより一貫性があり有意義なトピックを提供する。
論文 参考訳(メタデータ) (2024-09-30T18:15:31Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Neural Dynamic Focused Topic Model [2.9005223064604078]
ニューラル変動推論の最近の進歩を活用し、ダイナミックフォーカストピックモデルに代替的なニューラルアプローチを提案する。
本稿では,Bernoulli確率変数の列を利用してトピックの出現を追跡するトピック進化のためのニューラルモデルを開発する。
論文 参考訳(メタデータ) (2023-01-26T08:37:34Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - BERTopic: Neural topic modeling with a class-based TF-IDF procedure [0.0]
本稿では,クラスタリングタスクとしてのアプローチトピックモデリングの実現可能性を拡張するトピックモデルであるBERTopicを紹介する。
BERTopicはコヒーレントなトピックを生成し、古典的なモデルを含む様々なベンチマークと、より最近のトピックモデリングのクラスタリングアプローチに従うベンチマークで競争力を維持している。
論文 参考訳(メタデータ) (2022-03-11T08:35:15Z) - Topic Discovery via Latent Space Clustering of Pretrained Language Model
Representations [35.74225306947918]
本研究では, PLM 埋め込みを基盤とした空間学習とクラスタリングの連携フレームワークを提案する。
提案モデルでは,トピック発見のためにPLMがもたらす強力な表現力と言語的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2022-02-09T17:26:08Z) - Recurrent Coupled Topic Modeling over Sequential Documents [33.35324412209806]
現在のトピックは、結合重みが対応するすべてのトピックから進化し、マルチトピック・スレッドの進化を形成することを示す。
進化するトピック間のマルチカップリングを解消する,新しいデータ拡張手法を用いた新しいソリューションを提案する。
後方フィルタアルゴリズムを備えた新しいギブスサンプリング器は、閉形式の潜時時間パラメータを効率的に学習する。
論文 参考訳(メタデータ) (2021-06-23T08:58:13Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
我々は、ガンマ分布の階層構造を用いて、その多確率層生成ネットワークを構築するディープ・オートエンコーディング・トピック・モデル(DATM)を開発した。
Weibull上向き変分エンコーダを提案する。このエンコーダは深層ニューラルネットワークを介して情報を上向きに伝播し,次いで下向き生成モデルを提案する。
大規模コーパス上での教師なしおよび教師なしの学習タスクにおいて,モデルの有効性とスケーラビリティを実証した。
論文 参考訳(メタデータ) (2020-06-15T22:22:56Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。