Domain Adaptation via Alignment of Operation Profile for Remaining
Useful Lifetime Prediction
- URL: http://arxiv.org/abs/2302.01704v2
- Date: Fri, 13 Oct 2023 13:37:36 GMT
- Title: Domain Adaptation via Alignment of Operation Profile for Remaining
Useful Lifetime Prediction
- Authors: Ismail Nejjar, Fabian Geissmann, Mengjie Zhao, Cees Taal, Olga Fink
- Abstract summary: This paper proposes two novel DA approaches for RUL prediction based on an adversarial domain adaptation framework.
The proposed methodologies align the marginal distributions of each phase of the operation profile in the source domain with its counterpart in the target domain.
Results show that the proposed methods improve the accuracy of RUL predictions compared to current state-of-the-art DA methods.
- Score: 8.715570103753697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective Prognostics and Health Management (PHM) relies on accurate
prediction of the Remaining Useful Life (RUL). Data-driven RUL prediction
techniques rely heavily on the representativeness of the available
time-to-failure trajectories. Therefore, these methods may not perform well
when applied to data from new units of a fleet that follow different operating
conditions than those they were trained on. This is also known as domain
shifts. Domain adaptation (DA) methods aim to address the domain shift problem
by extracting domain invariant features. However, DA methods do not distinguish
between the different phases of operation, such as steady states or transient
phases. This can result in misalignment due to under- or over-representation of
different operation phases. This paper proposes two novel DA approaches for RUL
prediction based on an adversarial domain adaptation framework that considers
the different phases of the operation profiles separately. The proposed
methodologies align the marginal distributions of each phase of the operation
profile in the source domain with its counterpart in the target domain. The
effectiveness of the proposed methods is evaluated using the New Commercial
Modular Aero-Propulsion System (N-CMAPSS) dataset, where sub-fleets of turbofan
engines operating in one of the three different flight classes (short, medium,
and long) are treated as separate domains. The experimental results show that
the proposed methods improve the accuracy of RUL predictions compared to
current state-of-the-art DA methods.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Unsupervised Domain Adaptation Based on the Predictive Uncertainty of
Models [1.6498361958317636]
Unsupervised domain adaptation (UDA) aims to improve the prediction performance in the target domain under distribution shifts from the source domain.
We present a novel UDA method that learns domain-invariant features that minimize the domain divergence.
arXiv Detail & Related papers (2022-11-16T12:23:32Z) - LAMA-Net: Unsupervised Domain Adaptation via Latent Alignment and
Manifold Learning for RUL Prediction [0.0]
We propose textitLAMA-Net, an encoder-decoder based model (Transformer) with an induced bottleneck, Latent Alignment using Mean Maximum Discrepancy (MMD) and manifold learning.
The proposed method offers a promising approach to perform domain adaptation in RUL prediction.
arXiv Detail & Related papers (2022-08-17T16:28:20Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - ConDA: Continual Unsupervised Domain Adaptation [0.0]
Domain Adaptation (DA) techniques are important for overcoming the domain shift between the source domain used for training and the target domain where testing takes place.
Current DA methods assume that the entire target domain is available during adaptation, which may not hold in practice.
This paper considers a more realistic scenario, where target data become available in smaller batches and adaptation on the entire target domain is not feasible.
arXiv Detail & Related papers (2021-03-19T23:20:41Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
Varying domains and biased datasets can lead to differences between the training and the target distributions.
Current approaches for alleviating this often rely on estimating the ratio of training and target probability density functions.
arXiv Detail & Related papers (2020-10-23T22:13:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
We study few-shot supervised domain adaptation (DA) for regression problems, where only a few labeled target domain data and many labeled source domain data are available.
Many of the current DA methods base their transfer assumptions on either parametrized distribution shift or apparent distribution similarities.
We propose mechanism transfer, a meta-distributional scenario in which a data generating mechanism is invariant among domains.
arXiv Detail & Related papers (2020-02-10T02:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.