VT-GAN: Cooperative Tabular Data Synthesis using Vertical Federated Learning
- URL: http://arxiv.org/abs/2302.01706v2
- Date: Fri, 14 Feb 2025 17:05:36 GMT
- Title: VT-GAN: Cooperative Tabular Data Synthesis using Vertical Federated Learning
- Authors: Zilong Zhao, Han Wu, Aad Van Moorsel, Lydia Y. Chen,
- Abstract summary: VFL is a collaborative approach to train machine learning models among distinct data holders.
We introduce the VT-GAN framework, Vertical federated Tabular GAN, and demonstrate that VFL can be successfully used to implement GANs.
The difference in machine learning utility can be as low as 2.7%, even under extremely imbalanced data distributions.
- Score: 11.773842267048076
- License:
- Abstract: This paper presents the application of Vertical Federated Learning (VFL) to generate synthetic tabular data using Generative Adversarial Networks (GANs). VFL is a collaborative approach to train machine learning models among distinct tabular data holders, such as financial institutions, who possess disjoint features for the same group of customers. In this paper we introduce the VT-GAN framework, Vertical federated Tabular GAN, and demonstrate that VFL can be successfully used to implement GANs for distributed tabular data in privacy-preserving manner, with performance close to centralized GANs that assume shared data. We make design choices with respect to the distribution of GAN generator and discriminator models and introduce a training-with-shuffling technique so that no party can reconstruct training data from the GAN conditional vector. The paper presents (1) an implementation of VT-GAN, (2) a detailed quality evaluation of the VT-GAN-generated synthetic data, (3) an overall scalability examination of VT-GAN framework, (4) a security analysis on VT-GAN's robustness against Membership Inference Attack with different settings of Differential Privacy, for a range of datasets with diverse distribution characteristics. Our results demonstrate that VT-GAN can consistently generate high-fidelity synthetic tabular data of comparable quality to that generated by a centralized GAN algorithm. The difference in machine learning utility can be as low as 2.7%, even under extremely imbalanced data distributions across clients or with different numbers of clients.
Related papers
- An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - Taming Gradient Variance in Federated Learning with Networked Control
Variates [5.424502283356168]
Federated learning, a decentralized approach to machine learning, faces significant challenges such as extensive communication overheads.
We introduce a novel Networked Control Variates (FedNCV) framework for Federated Learning.
arXiv Detail & Related papers (2023-10-26T07:32:52Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Distributed Traffic Synthesis and Classification in Edge Networks: A
Federated Self-supervised Learning Approach [83.2160310392168]
This paper proposes FS-GAN to support automatic traffic analysis and synthesis over a large number of heterogeneous datasets.
FS-GAN is composed of multiple distributed Generative Adversarial Networks (GANs)
FS-GAN can classify data of unknown types of service and create synthetic samples that capture the traffic distribution of the unknown types.
arXiv Detail & Related papers (2023-02-01T03:23:11Z) - Fair and efficient contribution valuation for vertical federated
learning [49.50442779626123]
Federated learning is a popular technology for training machine learning models on distributed data sources without sharing data.
The Shapley value (SV) is a provably fair contribution valuation metric originated from cooperative game theory.
We propose a contribution valuation metric called vertical federated Shapley value (VerFedSV) based on SV.
arXiv Detail & Related papers (2022-01-07T19:57:15Z) - Fed-TGAN: Federated Learning Framework for Synthesizing Tabular Data [8.014848609114154]
We propose Fed-TGAN, the first Federated learning framework for Tabular GANs.
To effectively learn a complex GAN on non-identical participants, Fed-TGAN designs two novel features.
Results show that Fed-TGAN accelerates training time per epoch up to 200%.
arXiv Detail & Related papers (2021-08-18T01:47:36Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z) - Privacy-Preserving Asynchronous Federated Learning Algorithms for
Multi-Party Vertically Collaborative Learning [151.47900584193025]
We propose an asynchronous federated SGD (AFSGD-VP) algorithm and its SVRG and SAGA variants on the vertically partitioned data.
To the best of our knowledge, AFSGD-VP and its SVRG and SAGA variants are the first asynchronous federated learning algorithms for vertically partitioned data.
arXiv Detail & Related papers (2020-08-14T08:08:15Z) - Feature Quantization Improves GAN Training [126.02828112121874]
Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
arXiv Detail & Related papers (2020-04-05T04:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.