Feature Quantization Improves GAN Training
- URL: http://arxiv.org/abs/2004.02088v2
- Date: Wed, 15 Jul 2020 00:06:52 GMT
- Title: Feature Quantization Improves GAN Training
- Authors: Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, Changyou Chen
- Abstract summary: Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
- Score: 126.02828112121874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The instability in GAN training has been a long-standing problem despite
remarkable research efforts. We identify that instability issues stem from
difficulties of performing feature matching with mini-batch statistics, due to
a fragile balance between the fixed target distribution and the progressively
generated distribution. In this work, we propose Feature Quantization (FQ) for
the discriminator, to embed both true and fake data samples into a shared
discrete space. The quantized values of FQ are constructed as an evolving
dictionary, which is consistent with feature statistics of the recent
distribution history. Hence, FQ implicitly enables robust feature matching in a
compact space. Our method can be easily plugged into existing GAN models, with
little computational overhead in training. We apply FQ to 3 representative GAN
models on 9 benchmarks: BigGAN for image generation, StyleGAN for face
synthesis, and U-GAT-IT for unsupervised image-to-image translation. Extensive
experimental results show that the proposed FQ-GAN can improve the FID scores
of baseline methods by a large margin on a variety of tasks, achieving new
state-of-the-art performance.
Related papers
- Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Deep Boosting Multi-Modal Ensemble Face Recognition with Sample-Level
Weighting [11.39204323420108]
Deep convolutional neural networks have achieved remarkable success in face recognition.
The current training benchmarks exhibit an imbalanced quality distribution.
This poses issues for generalization on hard samples since they are underrepresented during training.
Inspired by the well-known AdaBoost, we propose a sample-level weighting approach to incorporate the importance of different samples into the FR loss.
arXiv Detail & Related papers (2023-08-18T01:44:54Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GANs (DE-GANs) aim to learn generative models with a limited amount of training data.
Contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs.
We propose FakeCLR, which only applies contrastive learning on fake samples.
arXiv Detail & Related papers (2022-07-18T14:23:38Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - FjORD: Fair and Accurate Federated Learning under heterogeneous targets
with Ordered Dropout [16.250862114257277]
We introduce Ordered Dropout, a mechanism that achieves an ordered, nested representation of knowledge in Neural Networks.
We employ this technique, along with a self-distillation methodology, in the realm of Federated Learning in a framework called FjORD.
FjORD consistently leads to significant performance gains over state-of-the-art baselines, while maintaining its nested structure.
arXiv Detail & Related papers (2021-02-26T13:07:43Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.