Engineering cubic quantum nondemolition Hamiltonian with mesoscopic
optical parametric interactions
- URL: http://arxiv.org/abs/2305.03260v1
- Date: Fri, 5 May 2023 03:23:36 GMT
- Title: Engineering cubic quantum nondemolition Hamiltonian with mesoscopic
optical parametric interactions
- Authors: Ryotatsu Yanagimoto, Rajveer Nehra, Edwin Ng, Alireza Marandi, Hideo
Mabuchi
- Abstract summary: We show that strongly squeezed fundamental and second harmonic fields propagating in a $chi(2)$ nonlinear medium evolve under a cubic QND Hamiltonian.
Our scheme can be highly tolerant against overall detection inefficiency with an auxiliary high-gain phase-sensitive optical amplifier.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme to realize cubic quantum nondemolition (QND) Hamiltonian
with optical parametric interactions. We show that strongly squeezed
fundamental and second harmonic fields propagating in a $\chi^{(2)}$ nonlinear
medium effectively evolve under a cubic QND Hamiltonian. We highlight the
versatility offered by such Hamiltonian for engineering non-Gaussian quantum
states, such as Schr\"odinger cat states and cubic phase states. We show that
our scheme can be highly tolerant against overall detection inefficiency with
an auxiliary high-gain phase-sensitive optical amplifier. Our proposal involves
parametric interactions in a mesoscopic photon-number regime, significantly
enhancing the effective nonlinear coupling from the nat\"ive single-photon
coupling rate while providing powerful means to fight photon propagation loss.
Experimental numbers suggest that our scheme might be feasible in the near
future, particularly with pulsed nonlinear nanophotonics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Genuine non-Gaussian entanglement of light and quantum coherence for an atom from noisy multiphoton spin-boson interactions [0.0]
entanglement and quantum coherence play a central role in advancing quantum technologies.
Here we consider the two-mode multiphoton Jaynes-Cummings (MPJC) model.
We demonstrate how entanglement and quantum coherence can be optimally generated and subsequently manipulated.
arXiv Detail & Related papers (2024-03-15T11:15:31Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum nondemolition measurements with optical parametric amplifiers
for ultrafast universal quantum information processing [0.0]
Realization of a room-temperature ultra-fast photon-number-resolving (PNR) quantum nondemolition (QND) measurement would have significant implications for photonic quantum information processing (QIP)
We show that a coherent pump field driving a phase-mismatched optical parametric amplifier (OPA) experiences displacements conditioned on the number of signal Bogoliubov excitations.
A measurement of the pump displacement thus provides a QND measurement of the signal Bogoliubov excitations, projecting the signal mode to a squeezed photon-number state.
arXiv Detail & Related papers (2022-09-02T15:23:40Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Photon-Number-Dependent Hamiltonian Engineering for Cavities [3.1541105002077714]
We develop a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits.
The engineered Hamiltonian admits various applications including canceling unwanted cavity self-Kerr interactions.
Our scheme can be implemented with coupled microwave cavities and transmon qubits in superconducting circuit systems.
arXiv Detail & Related papers (2020-09-16T18:00:02Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.