An Asymptotically Optimal Algorithm for the Convex Hull Membership Problem
- URL: http://arxiv.org/abs/2302.02033v4
- Date: Mon, 21 Oct 2024 05:02:20 GMT
- Title: An Asymptotically Optimal Algorithm for the Convex Hull Membership Problem
- Authors: Gang Qiao, Ambuj Tewari,
- Abstract summary: We study the convex hull membership problem in the pure exploration setting.
We present the firstally optimal algorithm called Thompson-CHM, whose modular design consists of a stopping rule and a sampling rule.
- Score: 21.312152185262
- License:
- Abstract: We study the convex hull membership (CHM) problem in the pure exploration setting where one aims to efficiently and accurately determine if a given point lies in the convex hull of means of a finite set of distributions. We give a complete characterization of the sample complexity of the CHM problem in the one-dimensional case. We present the first asymptotically optimal algorithm called Thompson-CHM, whose modular design consists of a stopping rule and a sampling rule. In addition, we extend the algorithm to settings that generalize several important problems in the multi-armed bandit literature. Furthermore, we discuss the extension of Thompson-CHM to higher dimensions. Finally, we provide numerical experiments to demonstrate the empirical behavior of the algorithm matches our theoretical results for realistic time horizons.
Related papers
- An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Ising Hamiltonians for Constrained Combinatorial Optimization Problems
and the Metropolis-Hastings Warm-Starting Algorithm [0.0]
Quantum approximate optimization algorithm (QAOA) is a promising variational quantum algorithm for optimization problems.
The Metropolis-Hassting warm-starting algorithm for QAOA is presented which can provably converge to the global optimal solutions.
arXiv Detail & Related papers (2023-07-18T05:28:45Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
the Strongly Convex Case [0.0]
We consider sampling from log concave distributions in Hamiltonian setting, without assuming that the objective is globally Lipschitz.
We propose two algorithms based on polygonal gradient (tamed) Euler schemes, to sample from a target measure, and provide non-asymptotic 2-Wasserstein distance bounds between the law of the process of each algorithm and the target measure.
arXiv Detail & Related papers (2023-01-19T12:32:41Z) - A proximal-proximal majorization-minimization algorithm for nonconvex
tuning-free robust regression problems [4.261680642170457]
We introduce proximal-proximal majorization-minimization (PPMM) algorithm for non regression problems.
Our proposed algorithm outperforms the existing state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-25T15:07:13Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - On Thompson Sampling with Langevin Algorithms [106.78254564840844]
Thompson sampling for multi-armed bandit problems enjoys favorable performance in both theory and practice.
It suffers from a significant limitation computationally, arising from the need for samples from posterior distributions at every iteration.
We propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling to address this issue.
arXiv Detail & Related papers (2020-02-23T22:35:29Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.