論文の概要: Certified Robust Control under Adversarial Perturbations
- arxiv url: http://arxiv.org/abs/2302.02208v1
- Date: Sat, 4 Feb 2023 17:39:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 19:39:05.093988
- Title: Certified Robust Control under Adversarial Perturbations
- Title(参考訳): 対向摂動下におけるロバスト認証制御
- Authors: Jinghan Yang, Hunmin Kim, Wenbin Wan, Naira Hovakimyan, Yevgeniy
Vorobeychik
- Abstract要約: 本稿では,入力摂動に対する予測の堅牢性検証を行う手法を提案する。
実験によって得られたエンドツーエンドの証明書の価値を示す。
- 参考スコア(独自算出の注目度): 25.51535946772693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous systems increasingly rely on machine learning techniques to
transform high-dimensional raw inputs into predictions that are then used for
decision-making and control. However, it is often easy to maliciously
manipulate such inputs and, as a result, predictions. While effective
techniques have been proposed to certify the robustness of predictions to
adversarial input perturbations, such techniques have been disembodied from
control systems that make downstream use of the predictions. We propose the
first approach for composing robustness certification of predictions with
respect to raw input perturbations with robust control to obtain certified
robustness of control to adversarial input perturbations. We use a case study
of adaptive vehicle control to illustrate our approach and show the value of
the resulting end-to-end certificates through extensive experiments.
- Abstract(参考訳): 自律システムは、高次元の生の入力を、意思決定と制御に使用される予測に変換する機械学習技術にますます依存している。
しかし、これらの入力を悪意を持って操作し、その結果、予測することが容易であることが多い。
逆入力摂動に対する予測のロバスト性を検証する効果的な手法が提案されているが、予測を下流で利用するための制御システムから切り離されている。
本稿では, 逆入力摂動に対する制御の正当性を得るために, 原入力摂動に対する予測の頑健性検証を構成するための最初の手法を提案する。
我々は、適応車両制御のケーススタディを用いて、我々のアプローチを説明し、広範囲な実験を通して得られたエンドツーエンド証明書の価値を示す。
関連論文リスト
- Transfer of Safety Controllers Through Learning Deep Inverse Dynamics Model [4.7962647777554634]
制御障壁証明書は、制御システムの安全性を正式に保証する上で有効であることが証明されている。
制御障壁証明書の設計は、時間がかかり、計算に費用がかかる作業である。
本稿では,制御器の正当性を保証する妥当性条件を提案する。
論文 参考訳(メタデータ) (2024-05-22T15:28:43Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
敵の防御は、ディープニューラルネットワークの堅牢性を大幅に向上させた。
本研究では,ネットワーク予測における導入性に関する一般的な手法を提案する。
また、信頼性の低い予測を拒否する意思決定の円滑化にも活用する。
論文 参考訳(メタデータ) (2023-06-10T15:11:24Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Certified Interpretability Robustness for Class Activation Mapping [77.58769591550225]
本稿では,解釈可能性マップのためのCORGI(Certifiable prOvable Robustness Guarantees)を提案する。
CORGIは入力画像を取り込み、そのCAM解釈可能性マップのロバスト性に対する証明可能な下限を与えるアルゴリズムである。
交通標識データを用いたケーススタディによるCORGIの有効性を示す。
論文 参考訳(メタデータ) (2023-01-26T18:58:11Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
我々は「ガウス雑音下での精度」を、入力に対する対角的ロバスト性の容易に計算可能なプロキシとして利用する。
実験の結果, 提案手法は, 最先端の訓練手法による信頼性向上を継続的に示すことがわかった。
論文 参考訳(メタデータ) (2022-12-18T03:57:12Z) - Assurance Monitoring of Learning Enabled Cyber-Physical Systems Using
Inductive Conformal Prediction based on Distance Learning [2.66512000865131]
本稿では,学習可能なサイバー物理システムの保証監視手法を提案する。
リアルタイムの保証監視を可能にするため,高次元入力を低次元埋め込み表現に変換するために距離学習を用いる。
壁面認識,話者認識,交通信号認識の3つの移動ロボットを用いて,そのアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T00:21:45Z) - End-to-end Uncertainty-based Mitigation of Adversarial Attacks to
Automated Lane Centering [12.11406399284803]
我々は,認識,計画,制御モジュール全体にわたる敵の攻撃の影響に対処するエンドツーエンドアプローチを提案する。
われわれのアプローチは、敵攻撃の影響を効果的に軽減し、元のOpenPilotよりも55%から90%改善できる。
論文 参考訳(メタデータ) (2021-02-27T22:36:32Z) - Better sampling in explanation methods can prevent dieselgate-like
deception [0.0]
予測モデルの解釈性は、それらのバイアスとエラーの原因を決定するために必要である。
IME、LIME、SHAPなどの一般的なテクニックでは、インスタンス機能の摂動を使用して個々の予測を説明します。
改良されたサンプリングによりLIMEとSHAPのロバスト性が向上し,以前に未試験のメソッドIMEがすでに最もロバストであることが示されている。
論文 参考訳(メタデータ) (2021-01-26T13:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。