CLiNet: Joint Detection of Road Network Centerlines in 2D and 3D
- URL: http://arxiv.org/abs/2302.02259v1
- Date: Sat, 4 Feb 2023 23:30:04 GMT
- Title: CLiNet: Joint Detection of Road Network Centerlines in 2D and 3D
- Authors: David Paz, Srinidhi Kalgundi Srinivas, Yunchao Yao, and Henrik I.
Christensen
- Abstract summary: This work introduces a new approach for joint detection of centerlines based on image data by localizing the features jointly in 2D and 3D.
To develop and evaluate our approach, a large urban driving dataset dubbed AV Breadcrumbs is automatically labeled by leveraging vector map representations and projective geometry to annotate over 900,000 images.
- Score: 5.543544712471748
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work introduces a new approach for joint detection of centerlines based
on image data by localizing the features jointly in 2D and 3D. In contrast to
existing work that focuses on detection of visual cues, we explore feature
extraction methods that are directly amenable to the urban driving task. To
develop and evaluate our approach, a large urban driving dataset dubbed AV
Breadcrumbs is automatically labeled by leveraging vector map representations
and projective geometry to annotate over 900,000 images. Our results
demonstrate potential for dynamic scene modeling across various urban driving
scenarios. Our model achieves an F1 score of 0.684 and an average normalized
depth error of 2.083. The code and data annotations are publicly available.
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - ONCE-3DLanes: Building Monocular 3D Lane Detection [41.46466150783367]
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space.
By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations.
arXiv Detail & Related papers (2022-04-30T16:35:25Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Robust 2D/3D Vehicle Parsing in CVIS [54.825777404511605]
We present a novel approach to robustly detect and perceive vehicles in different camera views as part of a cooperative vehicle-infrastructure system (CVIS)
Our formulation is designed for arbitrary camera views and makes no assumptions about intrinsic or extrinsic parameters.
In practice, our approach outperforms SOTA methods on 2D detection, instance segmentation, and 6-DoF pose estimation.
arXiv Detail & Related papers (2021-03-11T03:35:05Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Crowdsourced 3D Mapping: A Combined Multi-View Geometry and
Self-Supervised Learning Approach [10.610403488989428]
We propose a framework that estimates the 3D positions of semantically meaningful landmarks without assuming known camera intrinsics.
We utilize multi-view geometry as well as deep learning based self-calibration, depth, and ego-motion estimation for traffic sign positioning.
We achieve an average single-journey relative and absolute positioning accuracy of 39cm and 1.26m respectively.
arXiv Detail & Related papers (2020-07-25T12:10:16Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
arXiv Detail & Related papers (2020-07-16T05:02:45Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.