Sample Dropout: A Simple yet Effective Variance Reduction Technique in
Deep Policy Optimization
- URL: http://arxiv.org/abs/2302.02299v1
- Date: Sun, 5 Feb 2023 04:44:35 GMT
- Title: Sample Dropout: A Simple yet Effective Variance Reduction Technique in
Deep Policy Optimization
- Authors: Zichuan Lin, Xiapeng Wu, Mingfei Sun, Deheng Ye, Qiang Fu, Wei Yang,
Wei Liu
- Abstract summary: We show that the use of importance sampling could introduce high variance in the objective estimate.
We propose a technique called sample dropout to bound the estimation variance by dropping out samples when their ratio deviation is too high.
- Score: 18.627233013208834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent success in Deep Reinforcement Learning (DRL) methods has shown that
policy optimization with respect to an off-policy distribution via importance
sampling is effective for sample reuse. In this paper, we show that the use of
importance sampling could introduce high variance in the objective estimate.
Specifically, we show in a principled way that the variance of importance
sampling estimate grows quadratically with importance ratios and the large
ratios could consequently jeopardize the effectiveness of surrogate objective
optimization. We then propose a technique called sample dropout to bound the
estimation variance by dropping out samples when their ratio deviation is too
high. We instantiate this sample dropout technique on representative policy
optimization algorithms, including TRPO, PPO, and ESPO, and demonstrate that it
consistently boosts the performance of those DRL algorithms on both continuous
and discrete action controls, including MuJoCo, DMControl and Atari video
games. Our code is open-sourced at
\url{https://github.com/LinZichuan/sdpo.git}.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - You May Not Need Ratio Clipping in PPO [117.03368180633463]
Proximal Policy Optimization (PPO) methods learn a policy by iteratively performing multiple mini-batch optimization epochs of a surrogate objective with one set of sampled data.
Ratio clipping PPO is a popular variant that clips the probability ratios between the target policy and the policy used to collect samples.
We show in this paper that such ratio clipping may not be a good option as it can fail to effectively bound the ratios.
We show that ESPO can be easily scaled up to distributed training with many workers, delivering strong performance as well.
arXiv Detail & Related papers (2022-01-31T20:26:56Z) - Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation [12.415463205960156]
In model-free deep reinforcement learning (RL) algorithms, using noisy value estimates to supervise policy evaluation and optimization is detrimental to the sample efficiency.
We provide a systematic analysis of the sources of uncertainty in the noisy supervision that occurs in RL.
We propose a method whereby two complementary uncertainty estimation methods account for both the Q-value and the environmentity to better mitigate the negative impacts of noisy supervision.
arXiv Detail & Related papers (2022-01-05T15:46:06Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Adaptive Experience Selection for Policy Gradient [8.37609145576126]
Experience replay is a commonly used approach to improve sample efficiency.
gradient estimators using past trajectories typically have high variance.
Existing sampling strategies for experience replay like uniform sampling or prioritised experience replay do not explicitly try to control the variance of the gradient estimates.
We propose an online learning algorithm, adaptive experience selection (AES), to adaptively learn an experience sampling distribution that explicitly minimises this variance.
arXiv Detail & Related papers (2020-02-17T13:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.