Policy Gradient with Active Importance Sampling
- URL: http://arxiv.org/abs/2405.05630v1
- Date: Thu, 9 May 2024 09:08:09 GMT
- Title: Policy Gradient with Active Importance Sampling
- Authors: Matteo Papini, Giorgio Manganini, Alberto Maria Metelli, Marcello Restelli,
- Abstract summary: Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
- Score: 55.112959067035916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Importance sampling (IS) represents a fundamental technique for a large surge of off-policy reinforcement learning approaches. Policy gradient (PG) methods, in particular, significantly benefit from IS, enabling the effective reuse of previously collected samples, thus increasing sample efficiency. However, classically, IS is employed in RL as a passive tool for re-weighting historical samples. However, the statistical community employs IS as an active tool combined with the use of behavioral distributions that allow the reduction of the estimate variance even below the sample mean one. In this paper, we focus on this second setting by addressing the behavioral policy optimization (BPO) problem. We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance as much as possible. We provide an iterative algorithm that alternates between the cross-entropy estimation of the minimum-variance behavioral policy and the actual policy optimization, leveraging on defensive IS. We theoretically analyze such an algorithm, showing that it enjoys a convergence rate of order $O(\epsilon^{-4})$ to a stationary point, but depending on a more convenient variance term w.r.t. standard PG methods. We then provide a practical version that is numerically validated, showing the advantages in the policy gradient estimation variance and on the learning speed.
Related papers
- $Δ\text{-}{\rm OPE}$: Off-Policy Estimation with Pairs of Policies [13.528097424046823]
We introduce $Deltatext-rm OPE$ methods based on the widely used Inverse Propensity Scoring estimator.
Simulated, offline, and online experiments show that our methods significantly improve performance for both evaluation and learning tasks.
arXiv Detail & Related papers (2024-05-16T12:04:55Z) - Sample Dropout: A Simple yet Effective Variance Reduction Technique in
Deep Policy Optimization [18.627233013208834]
We show that the use of importance sampling could introduce high variance in the objective estimate.
We propose a technique called sample dropout to bound the estimation variance by dropping out samples when their ratio deviation is too high.
arXiv Detail & Related papers (2023-02-05T04:44:35Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
arXiv Detail & Related papers (2023-01-16T06:28:00Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.