Precision of quantum simulation of all-to-all coupling in a local
architecture
- URL: http://arxiv.org/abs/2302.02458v1
- Date: Sun, 5 Feb 2023 18:54:28 GMT
- Title: Precision of quantum simulation of all-to-all coupling in a local
architecture
- Authors: Evgeny Mozgunov
- Abstract summary: We find an analytic relation between the values $J_ij$ of the desired interaction and the parameters of the 2d circuit.
For the relative error to be a constant $epsilon$, one requires an energy scale growing as $n6$ in the number of qubits.
Our proof is based on the Schrieffer-Wolff transformation and generalizes to any hardware.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simple 2d local circuit that implements all-to-all interactions
via perturbative gadgets. We find an analytic relation between the values
$J_{ij}$ of the desired interaction and the parameters of the 2d circuit, as
well as the expression for the error in the quantum spectrum. For the relative
error to be a constant $\epsilon$, one requires an energy scale growing as
$n^6$ in the number of qubits, or equivalently a control precision up to $
n^{-6}$. Our proof is based on the Schrieffer-Wolff transformation and
generalizes to any hardware. In the architectures available today, $5$ digits
of control precision are sufficient for $n=40,~ \epsilon =0.1$. Comparing our
construction, known as paramagnetic trees, to ferromagnetic chains used in
minor embedding, we find that at chain length $>3$ the performance of minor
embedding degrades exponentially with the length of the chain, while our
construction experiences only a polynomial decrease.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Small-time controllability for the nonlinear Schr\"odinger equation on
$\mathbb{R}^N$ via bilinear electromagnetic fields [55.2480439325792]
We address the small-time controllability problem for a nonlinear Schr"odinger equation (NLS) on $mathbbRN$ in the presence of magnetic and electric external fields.
In detail, we study when it is possible to control the dynamics of (NLS) as fast as desired via sufficiently large control signals.
arXiv Detail & Related papers (2023-07-28T21:30:44Z) - On the moments of random quantum circuits and robust quantum complexity [0.0]
We prove new lower bounds on the growth of robust quantum circuit complexity.
We show two bounds for random quantum circuits with local gates drawn from a subgroup of $SU(4)$.
arXiv Detail & Related papers (2023-03-29T18:06:03Z) - Does qubit connectivity impact quantum circuit complexity? [5.908927557774895]
Some physical implementation schemes of quantum computing can apply two-qubit gates only on certain pairs of qubits.
In this paper, we show that all $n$-qubit unitary operations can be implemented by quantum circuits of $O(4n)$ depth and $O(4n)$ size.
arXiv Detail & Related papers (2022-11-10T08:38:29Z) - Determination of Chain Strength induced by Embedding in D-Wave Quantum
Annealer [0.0]
D-wave quantum annealer requires embedding with ferromagnetic (FM) chains connected by several qubits.
determination of the chain strength $J_c$ required to sustain FM order of qubits in the chains is crucial for the accuracy of quantum annealing.
arXiv Detail & Related papers (2022-09-25T06:59:10Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Epsilon-nets, unitary designs and random quantum circuits [0.11719282046304676]
Epsilon-nets and approximate unitary $t$-designs are notions of unitary operations relevant for numerous applications in quantum information and quantum computing.
We prove that for a fixed $d$ of the space, unitaries constituting $delta$-approx $t$-expanders form $epsilon$-nets for $tsimeqfracd5/2epsilon$ and $delta=left(fracepsilon3/2dright)d2$.
We show that approximate tdesigns can be generated
arXiv Detail & Related papers (2020-07-21T15:16:28Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.